-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
321 lines (251 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from torch.multiprocessing import Process, Pipe
from sac.utils import pprint, str2bool
from rollout_runner import rollout_worker
from agent import Agent, TestAgent
import sac.utils as utils
import numpy as np
import torch
import argparse
import random
import threading
import time
import os
import sys
parser = argparse.ArgumentParser()
parser.add_argument('-n_envs', type=int, help='number of parallel environments to be created', default=2)
parser.add_argument('-n_agents', type=int, help='number of agent in each environment', default=3)
parser.add_argument('-popsize', type=int, help='evolutionary population size', default=3)
parser.add_argument('-rollsize', type=int, help='rollout size for agents', default=3)
parser.add_argument('-evals', type=int, help='evals to compute a fitness', default=1)
parser.add_argument('-frames', type=float, help='iteration in millions', default=2)
parser.add_argument('-filter_c', type=int, help='prob multiplier for evo experiences absorbtion into buffer', default=1)
parser.add_argument('-seed', type=int, help='seed', default=2021)
parser.add_argument('-algo', type=str, help='SAC vs. MADDPG', default='SAC')
parser.add_argument('-savetag', help='saved tag', default='')
parser.add_argument('-gradperstep', type=float, help='gradient steps per frame', default=1.0)
parser.add_argument('-pr', type=float, help='prioritization', default=0.0)
parser.add_argument('-use_gpu', type=str2bool, help='usage of gpu', default=False)
parser.add_argument('-alz', type=str2bool, help='actualize', default=False)
parser.add_argument('-cmd_vel', type=str2bool, help='switch to velocity commands', default=True)
class Parameters:
def __init__(self):
self.num_envs = vars(parser.parse_args())['n_envs']
self.num_agents = vars(parser.parse_args())['n_agents']
self.popn_size = vars(parser.parse_args())['popsize']
self.rollout_size = vars(parser.parse_args())['rollsize']
self.num_evals = vars(parser.parse_args())['evals']
self.iterations_bound = int(vars(parser.parse_args())['frames'] * 1000000)
self.actualize = vars(parser.parse_args())['alz']
self.priority_rate = vars(parser.parse_args())['pr']
self.use_gpu = vars(parser.parse_args())['use_gpu']
self.seed = vars(parser.parse_args())['seed']
self.gradperstep = vars(parser.parse_args())['gradperstep']
self.algo_name = vars(parser.parse_args())['algo']
self.filter_c = vars(parser.parse_args())['filter_c']
# general hyper-parameters
self.hidden_size = 256
self.actor_lr = 5e-5
self.critic_lr = 1e-5
self.tau = 1e-5
self.init_w = True
self.gamma = 0.5 if self.popn_size > 0 else 0.97 # TODO: check whether gamma is really important for population size
self.batch_size = 512
self.buffer_size = 100000
self.reward_scaling = 10.0
self.action_loss = False
self.policy_ups_freq = 2
self.policy_noise = True
self.policy_noise_clip = 0.4
self.alpha = 0.2
self.target_update_interval = 1
self.state_dim = 33
self.action_dim = 4
# mutation and cros-over parameters
self.crossover_prob = 0.1
self.mutation_prob = 0.9
self.extinction_prob = 0.005
self.extinction_magnitude = 0.5
self.weight_clamp = 1000000
self.mut_distribution = 1 # 1-Gaussian, 2-Laplace, 3-Uniform
self.lineage_depth = 10
self.ccea_reduction = "leniency"
self.num_anchors = 5
self.num_elites = 4
self.num_blends = int(0.15 * self.popn_size)
self.num_test = 10
self.test_gap = 5
# save filenames
self.savetag = vars(parser.parse_args())['savetag'] + \
'pop' + str(self.popn_size) + \
'_roll' + str(self.rollout_size) + \
'_seed' + str(self.seed) + \
('_sac' if self.algo_name else '')
self.critic_fname = 'critic_' + self.savetag
self.actor_fname = 'actor_' + self.savetag
self.log_fname = 'reward_' + self.savetag
self.best_fname = 'best_' + self.savetag
self.save_foldername = 'results/'
self.metric_save = self.save_foldername + 'metrics/'
self.model_save = self.save_foldername + 'models/'
self.aux_save = self.save_foldername + 'auxiliary/'
if not os.path.exists(self.save_foldername):
os.makedirs(self.save_foldername)
if not os.path.exists(self.save_foldername):
os.makedirs(self.save_foldername)
if not os.path.exists(self.metric_save):
os.makedirs(self.metric_save)
if not os.path.exists(self.model_save):
os.makedirs(self.model_save)
if not os.path.exists(self.aux_save):
os.makedirs(self.aux_save)
class MultiagentEvolution:
def __init__(self, args):
self.args = args
# initialize the multiagent team of agents
self.agents = [Agent(self.args, _id) for _id in range(self.args.num_agents)]
self.test_agent = TestAgent(self.args, 991)
# model bucket as references to the corresponding agent's attributes
self.buffer_bucket = [ag.buffer.tuples for ag in self.agents]
self.popn_bucket = [ag.popn for ag in self.agents]
self.rollout_bucket = [ag.rollout_actor for ag in self.agents]
self.test_bucket = self.test_agent.rollout_actor
# evolutionary workers
if self.args.popn_size > 0:
self.evo_task_pipes = [Pipe() for _ in range(args.popn_size * args.num_evals)]
self.evo_result_pipes = [Pipe() for _ in range(args.popn_size * args.num_evals)]
self.evo_workers = [
Process(target=rollout_worker, args=(
self.args, _id,'evo', self.evo_task_pipes[_id][1], self.evo_result_pipes[_id][0],
self.buffer_bucket, self.popn_bucket, True))
for _id in range(args.popn_size * args.num_evals)]
for worker in self.evo_workers: worker.start()
# policy gradient workers
if self.args.rollout_size > 0:
self.pg_task_pipes = Pipe()
self.pg_result_pipes = Pipe()
self.pg_workers = [
Process(target=rollout_worker, args=(
self.args, 0, 'pg', self.pg_task_pipes[1], self.pg_result_pipes[0],
self.buffer_bucket, self.rollout_bucket, self.args.rollout_size > 0))]
for worker in self.pg_workers: worker.start()
# test workers
self.test_task_pipes = Pipe()
self.test_result_pipes = Pipe()
self.test_workers = [
Process(target=rollout_worker, args=(
self.args, 0, 'test', self.test_task_pipes[1], self.test_result_pipes[0],
None, self.test_bucket, False))]
for worker in self.test_workers: worker.start()
self.best_score = -999
self.total_frames = 0
self.gen_frames = 0
self.test_trace = []
def make_teams(self, num_agents, popn_size, num_evals):
temp_inds = []
for _ in range(num_evals):
temp_inds += list(range(popn_size))
all_inds = [temp_inds[:] for _ in range(num_agents)]
for entry in all_inds:
random.shuffle(entry)
teams = [[entry[i] for entry in all_inds] for i in range(popn_size * num_evals)]
return teams
def train(self, gen, test_tracker):
# test rollout
if gen % self.args.test_gap == 0:
self.test_agent.make_champ_team(self.agents)
self.test_task_pipes[0].send("START")
teams = self.make_teams(args.num_agents, args.popn_size, args.num_evals)
# start evolution rollout
if self.args.popn_size > 0:
for pipe, team in zip(self.evo_task_pipes, teams):
pipe[0].send(team)
# start policy gradient rollout
if self.args.rollout_size > 0:
# synch policy gradient actors to its corresponding rollout_bucket
for agent in self.agents:
agent.update_rollout_actor()
# start rollouts using the rollout actors
self.pg_task_pipes[0].send('START')
# policy gradient updates to spin up threads for each agent
threads = [threading.Thread(target=agent.update_parameters, args=()) for agent in self.agents]
# start threads
for thread in threads:
thread.start()
# join threads
for thread in threads:
thread.join()
all_fits = []
# join evolution rollouts
if self.args.popn_size > 0:
for pipe in self.evo_result_pipes:
entry = pipe[1].recv()
team = entry[0]
fitness = entry[1][0]
frames = entry[2]
for agent_id, popn_id in enumerate(team):
self.agents[agent_id].fitnesses[popn_id].append(utils.list_mean(fitness))
all_fits.append(utils.list_mean(fitness))
self.total_frames += frames
pg_fits = []
# join policy gradient rollouts
if self.args.rollout_size > 0:
entry = self.pg_result_pipes[1].recv()
pg_fits = entry[1][0]
self.total_frames += entry[2]
test_fits = []
# join test rollouts
if gen % self.args.test_gap == 0:
entry = self.test_result_pipes[1].recv()
test_fits = entry[1][0]
test_tracker.update([utils.list_mean(test_fits)], self.total_frames)
self.test_trace.append(utils.list_mean(test_fits))
# evolution step
for agent in self.agents:
agent.evolve()
# save models periodically
if gen % 20 == 0:
print("Models Saved")
for id, test_actor in enumerate(self.test_agent.rollout_actor):
torch.save(test_actor.state_dict(), self.args.model_save + str(id) + '_' + self.args.actor_fname)
return all_fits, pg_fits, test_fits
if __name__ == "__main__":
args = Parameters()
# initiate tracker
test_tracker = utils.Tracker(args.metric_save, [args.log_fname], '.csv')
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
multiagent_evolver = MultiagentEvolution(args)
time_start = time.time()
# start training loop
for gen in range(1, 10000000000):
popn_fits, pg_fits, test_fits = multiagent_evolver.train(gen, test_tracker)
print('Ep:/Frames', gen, '/', multiagent_evolver.total_frames, 'Popn stat:', utils.list_stat(popn_fits), 'PG_stat:',
utils.list_stat(pg_fits), 'Test_trace:', [pprint(i) for i in multiagent_evolver.test_trace[-5:]],
'FPS:', pprint(multiagent_evolver.total_frames / (time.time() - time_start)), 'Evo', args.scheme, 'PS:', args.ps)
if gen % 5 == 0:
print("\n")
print('Test_stat:', utils.list_stat(test_fits), 'SAVETAG: ', args.savetag)
print('Weight Stats: min/max/average', pprint(multiagent_evolver.test_bucket[0].get_norm_stats()))
print('Buffer Lens:', [ag.buffer[0].__len__() for ag in multiagent_evolver.agents] if args.ps == 'trunk' else [ag.buffer.__len__() for ag in multiagent_evolver.agents])
print("\n")
if gen % 10 == 0 and args.rollout_size > 0:
print("\n")
print('Q', pprint(multiagent_evolver.agents[0].algo.q))
print('Q_loss', pprint(multiagent_evolver.agents[0].algo.q_loss))
print('Policy', pprint(multiagent_evolver.agents[0].algo.policy_loss))
print('Val', pprint(multiagent_evolver.agents[0].algo.val))
print('Val_loss', pprint(multiagent_evolver.agents[0].algo.value_loss))
print('Mean_loss', pprint(multiagent_evolver.agents[0].algo.mean_loss))
print('Std_loss', pprint(multiagent_evolver.agents[0].algo.std_loss))
print('R_mean:', [agent.buffer.rstats['mean'] for agent in multiagent_evolver.agents])
print('G_mean:', [agent.buffer.gstats['mean'] for agent in multiagent_evolver.agents])
if multiagent_evolver.total_frames > args.frames_bound:
break
# kill all processes
multiagent_evolver.pg_task_pipes[0].send('TERMINATE')
multiagent_evolver.test_task_pipes[0].send('TERMINATE')
for p in multiagent_evolver.evo_task_pipes:
p[0].send('TERMINATE')
print('Finished Running ', args.savetag)
sys.exit(0)