-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathplot_cnv.R
87 lines (77 loc) · 4.18 KB
/
plot_cnv.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
suppressPackageStartupMessages({
library(dplyr)
library(ggplot2)
library(scales)
})
df <- read.table(
commandArgs(trailingOnly=T)[1],
col.names=c("sample", "cnv", "cnv.type", "copy.number",
"exon", "in.cnv.1", "in.cnv.2", "cov",
"max.cn.considered", "mu.dip", "sigma.dip"),
colClasses=c("factor", "factor", "factor", "integer",
"factor", "factor", "factor", "numeric",
"integer", "numeric", "numeric")
)
df$max.cn.considered <- ifelse(df$max.cn.considered == 0, 3, -1)
sample <- levels(df$sample)[1]
for (this.cnv in levels(df$cnv)) {
cat("Plotting ", this.cnv, "\n", sep="")
this.cnv.df <- filter(df, cnv == this.cnv, max.cn.considered > 0)
this.copy.number <- this.cnv.df$copy.number[1]
plot.max.rel.cov <- max(0.65, max((this.cnv.df$cov - this.cnv.df$mu.dip)/this.cnv.df$mu.dip), 0.5 + (this.copy.number-2)/2)
if (nrow(this.cnv.df) > 1) {
plot <- ggplot(this.cnv.df, aes(x = exon, y = (cov - mu.dip) / mu.dip, group=1))
plot <- plot + scale_y_continuous(limits=c(-0.89, plot.max.rel.cov), labels=percent)
plot <- plot + geom_ribbon(aes(ymin = -2*sigma.dip, ymax=2*sigma.dip),
fill="lightgrey")
plot <- plot + geom_ribbon(aes(ymin = -sigma.dip, ymax=sigma.dip),
fill="grey")
plot <- plot + geom_hline(yintercept=-0.5, size=1.5, colour="grey40")
plot <- plot + geom_hline(yintercept=0.5, size=1.5, colour="grey40")
plot <- plot + geom_line(aes(colour = in.cnv.1), size=2)
plot <- plot + geom_point(aes(colour = in.cnv.2), size=2)
plot <- plot + scale_colour_manual(values=c("black", "firebrick"), guide=F)
plot <- plot + xlab("Each tick is an exon. Grey ribbons show +/- 2\u03C3 for the diploid coverage distribution at each exon.")
plot <- plot + ylab("Coverage relative to diploid mean")
plot <- plot + ggtitle(paste("Sample", sample, "predicted\nto have copy number", this.copy.number, "at region", this.cnv))
plot <- plot + theme_bw() + theme(
plot.title=element_text(size=8),
axis.title.x=element_text(size=8),
axis.title.y=element_text(size=8),
axis.text.x=element_blank(),
axis.text.y=element_text(size=8*5/6))
ggsave(paste("clamms_cnv_plots/", sample, "/",
gsub(":", "_", gsub("-", "_", this.cnv)),
".png", sep=""),
plot=plot, units="in", width=4*1.618, height=4)
} else {
this.exon <- this.cnv.df$exon[1]
cov <- this.cnv.df$cov[1]
mu.dip <- this.cnv.df$mu.dip[1]
sigma.dip <- this.cnv.df$sigma.dip[1]
cov <- (cov - mu.dip) / mu.dip
plot <- ggplot(data.frame(x=seq(-1, plot.max.rel.cov, 0.01)), aes(x=x))
plot <- plot + scale_x_continuous(
limits=c(-1, plot.max.rel.cov),
breaks=seq(-1, plot.max.rel.cov, 0.5))
for (k in seq(1, max(3, this.copy.number))) {
plot <- plot + stat_function(
fun=dnorm,
arg=list(mean=0.5*(k-2), sd=sigma.dip*sqrt(k/2)))
}
plot <- plot + geom_point(x=cov, y=dnorm(cov, mean=0.5*(this.copy.number-2), sd=sigma.dip*sqrt(this.copy.number/2)), size=2, colour="red")
plot <- plot + xlab("Coverage relative to diploid mean")
plot <- plot + ylab("Probability density for mixture component")
plot <- plot + ggtitle(paste("Sample", sample, "predicted\nto have copy number", this.copy.number, "at region", this.cnv))
plot <- plot + theme_bw() + theme(
plot.title=element_text(size=6),
axis.title.x=element_text(size=6),
axis.title.y=element_text(size=6),
axis.text.x=element_text(size=5),
axis.text.y=element_text(size=5))
ggsave(paste("clamms_cnv_plots/", sample, "/",
gsub(":", "_", gsub("-", "_", this.cnv)),
".png", sep=""),
plot=plot, units="in", width=2*1.618, height=2)
}
}