-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathNet.py
23 lines (21 loc) · 1.06 KB
/
Net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import PackedSequence
import numpy
class Net(nn.Module):
def __init__(self, nInput, nHidden, nOutput):
super(Net, self).__init__()
self.gru = nn.GRU(nInput, nHidden, 1, bidirectional = True)
self.fc = nn.Linear(nHidden * 2, nOutput)
# Xavier Glorot initialization
nn.init.orthogonal(self.gru.weight_ih_l0); nn.init.constant(self.gru.bias_ih_l0, 0)
nn.init.orthogonal(self.gru.weight_hh_l0); nn.init.constant(self.gru.bias_hh_l0, 0)
nn.init.orthogonal(self.gru.weight_ih_l0_reverse); nn.init.constant(self.gru.bias_ih_l0_reverse, 0)
nn.init.orthogonal(self.gru.weight_hh_l0_reverse); nn.init.constant(self.gru.bias_hh_l0_reverse, 0)
nn.init.xavier_uniform(self.fc.weight); nn.init.constant(self.fc.bias, 0)
def forward(self, x):
# Returns log probabilities
# Both input and output are PackedSequences
x = self.gru(x)[0]
return PackedSequence(F.softmax(self.fc(x[0]), dim = -1), x[1])