-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfusion_matrix.py
executable file
·138 lines (112 loc) · 4.47 KB
/
confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
"""Print confusion matrix between reference and system diarization at frame
level.
To print the confusion matrix between the frame-level labeling corresponding to
a system RTTM file ``sys.rttm`` and a corresponding gold standard RTTM
``ref.rttm``:
python confusion_matrix.py ref.rttm sys.rttm
By default this will output raw frequencies so that the ``i,j``-th cell
contains the total number of times that the ``i``-th reference class was
assigned to the ``j``-th system class. Alternately, the ``--norm`` flag may be
invoked so that each row is normalized to sum to 1:
python confusion_matrix.py --norm ref.rttm sys.rttm
"""
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import sys
import numpy as np
from tabulate import tabulate
from scorelib import __version__ as VERSION
from scorelib.logging import getLogger
from scorelib.metrics import contingency_matrix
from scorelib.score import rttm_to_turns, turns_to_frames
logger = getLogger()
# TODO: See if this can be subsumed under scorelib.scores.rttms_to_frames
# without code becoming unreadable.
def rttms_to_frames(ref_rttm_fn, sys_rttm_fn, step=0.010):
"""Return frame-level labels corresponding to reference and system RTTMs.
Parameters
----------
ref_rttm_fn : str
Path to reference RTTM file.
sys_rttm_fn : str
Path to system RTTM file.
step : float, optional
Frame step size in seconds.
(Default: 0.01)
Returns
-------
ref_labels : ndarray, (n_frames,)
Frame-level labels corresponding to reference RTTM.
sys_labels : ndarray, (n_frames,)
Frame-level labels corresponding to system RTTM.
"""
# Load turns from RTTMs.
ref_rec_id_to_turns = rttm_to_turns(ref_rttm_fn)
sys_rec_id_to_turns = rttm_to_turns(sys_rttm_fn)
ref_labels = []
sys_labels = []
max_ref_label = max_sys_label = 0
rec_ids = sorted(set(ref_rec_id_to_turns.keys()) &
set(sys_rec_id_to_turns.keys()))
if len(rec_ids) != 1:
raise ValueError('RTTM contains more than one file.')
# Determine correct duration.
ref_turns = list(ref_rec_id_to_turns.values())[0]
sys_turns = list(sys_rec_id_to_turns.values())[0]
ref_dur = max(turn.offset for turn in ref_turns)
sys_dur = max(turn.offset for turn in sys_turns)
dur = min(ref_dur, sys_dur)
# Convert to frame-level labelings.
ref_labels = turns_to_frames(ref_turns, dur, step, as_string=True)
sys_labels = turns_to_frames(sys_turns, dur, step, as_string=True)
return ref_labels, sys_labels
def print_cm(cm, ref_classes, sys_classes, norm=True):
"""Print confusion_matrix.
Parameters
----------
cm : ndarray, (n_ref_classes, n_sys_classes)
Contingency table between reference and system labelings.
ref_classes : ndarray, (n_ref_classes,)
Reference classes.
sys_classes : ndarray, (n_sys_classes,)
System classes.
norm : bool, optional
If True, normalize rows of confusion matrix to sum to 1.
(Default: False)
"""
cm, ref_classes, sys_clases = contingency_matrix(ref_labels, sys_labels)
if norm:
marginals = cm.sum(axis=1, dtype='float64')
cm = cm / np.expand_dims(marginals, axis=1)
cm = cm.tolist()
for ii, label in enumerate(ref_classes):
cm[ii].insert(0, label)
logger.info(tabulate(cm, headers=[''] + list(sys_classes)))
if __name__ == '__main__':
# Parse command line arguments.
parser = argparse.ArgumentParser(
description='Score RTTM.', add_help=True,
usage='%(prog)s [options] ref_rttm sys_rttm')
parser.add_argument(
'ref_rttm', nargs=None, help='reference RTTM')
parser.add_argument(
'sys_rttm', nargs=None, help='system RTTM')
parser.add_argument(
'--step', nargs=None, default=0.010, type=float, metavar='FLOAT',
help='step size in seconds (Default: %(default)s)')
parser.add_argument(
'--norm', action='store_true', default=False,
help='normalize rows')
parser.add_argument(
'--version', action='version',
version='%(prog)s ' + VERSION)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
ref_labels, sys_labels = rttms_to_frames(
args.ref_rttm, args.sys_rttm, args.step)
cm, ref_classes, sys_classes = contingency_matrix(ref_labels, sys_labels)
print_cm(cm, ref_classes, sys_classes, args.norm)