-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAstro_Entity_Classifier.py
204 lines (168 loc) · 11.2 KB
/
Astro_Entity_Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
<<<<<<< HEAD
from Outliers import remove_outliers_with_isolation_forest
import tkinter.messagebox as tmsg
from tkinter import *
from joblib import load
import pandas as pd
import numpy as np
# Resets the features to 0
def resetFeatures():
for i in range(8):
tv[i].set(0)
features[i].update()
output["text"] = "Enter new astro entity details"
# Uses a Machine Learning(ML) model trained by Bagging Classifier Algorithm
def predictEntity():
try:
if ((tv[0].get() >= 0) and (tv[0].get() <= 360)) and ((tv[1].get() >= -90) and (tv[1].get() <= 90)):
Model = load("E:\\Machine Learning\\Astro Entity Classifier\\Model.joblib")
pre_processor = load("E:\\Machine Learning\\Astro Entity Classifier\\pre_processor.joblib")
features = [tv[0].get(), tv[1].get(), tv[2].get(), tv[3].get(), tv[4].get(), tv[5].get(), tv[6].get(), tv[7].get()]
features_nda = np.array([features])
features_df = pd.DataFrame(features_nda, columns=["alpha","delta","u","g","r","i","z","redshift"])
features_pp_nda = pre_processor.transform(features_df)
features_pp_df = pd.DataFrame(features_pp_nda, columns=features_df.columns)
predicted_entity = Model.predict(features_pp_df)
output["text"] = f"The astro entity with the given details is a \n{predicted_entity[0]}"
elif ((tv[0].get() >= 0) and (tv[0].get() <= 360)) == False:
tmsg.showinfo(title="Warning!", message="The value of alpha is invalid")
output["text"] = "The value of alpha should lie between 0 and 360 degrees"
else:
tmsg.showinfo(title="Warning!", message="The value of delta is invalid")
output["text"] = "The value of delta should lie between -90 and 90 degrees"
except TclError:
tmsg.showinfo(title="Warning!", message="Invalid details have been entered")
output["text"] = "Enter valid details"
# Screen Customization
root = Tk()
root.geometry("950x750")
root.resizable(True, True)
root.minsize(900,750)
root.config(bg="#030303")
root.title("Astro Entity Classifier")
root.iconbitmap("E:\\Machine Learning\\Astro Entity Classifier\\astro_entity.ico")
# Giving Title
f1 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f1.pack(fill=X, padx=50, pady=50)
Label(f1, text="Galaxy-Star-Quasar(GSQ) Identifier", fg="peachpuff", bg="#030303", font="Lucida 25 bold").pack(padx=10, pady=10)
# Creating Entries for Astro Entity Features
f2 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f2.pack(fill=X, ipadx=10, ipady=10, padx=50)
Label(f2, text="1. Enter aplha = Right Ascension angle (at J2000 epoch): " , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=0, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="2. Enter delta = Declination angle (at J2000 epoch):" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=1, column=0, sticky=W, padx=15)
Label(f2, text="3. Enter u = Ultraviolet filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=2, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="4. Enter g = Green filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=3, column=0, sticky=W, padx=15)
Label(f2, text="5. Enter r = Red filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=4, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="6. Enter i = Near Infrared filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=5, column=0, sticky=W, padx=15)
Label(f2, text="7. Enter z = Infrared filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=6, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="8. Enter redshift = Value based on the increase in wavelength:", bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=7, column=0, sticky=W, padx=15)
"""
Source: SDSS_DR18-SDSS_DR17.csv
97298: [358.095259, 56.24256139, 16.88485, 14.28269, 13.58865, 13.03581, 12.93735, -0.000260102, STAR]
"""
tv = [None]*8
features = [None]*8
initial_features = np.array([358.095259, 56.24256139, 16.88485, 14.28269, 13.58865, 13.03581, 12.93735, -0.000260102])
for i in range(8):
tv[i] = DoubleVar()
tv[i].set(initial_features[i])
features[i] = Entry(f2, textvariable = tv[i], font="Lucida 14 normal", bg="thistle", relief=SUNKEN)
if i%2 == 0:
features[i].grid(row=i, column=1, sticky=NSEW, ipady=2, padx=50, pady=10)
else:
features[i].grid(row=i, column=1, sticky=NSEW, ipady=2, padx=50)
Button(f2, text="RESET", command=resetFeatures, font="Lucida 16 bold", activebackground="gold", bg="deepskyblue", width=15, bd=4, relief=SUNKEN).grid(row=10, column=0, sticky=W, padx=30, pady=10, ipady=3)
Button(f2, text="IDENTIFY", command=predictEntity, font="Lucida 16 bold", activebackground="gold", bg="lime", width=15, bd=4, relief=SUNKEN).grid(row=10, column=0, sticky=E, padx=30, pady=10, ipady=3)
for i in range(8):
f2.grid_rowconfigure(i, weight=1, pad=5)
f2.grid_columnconfigure(1, weight=1)
# Labelling the Predicted Entity
f3 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f3.pack(fill=X, padx=50, pady=20)
output = Label(f3, text="Press RESET for entering new astro entity details", fg="crimson", bg="#030303", font="Lucida 16 bold")
output.pack(padx=10, pady=10)
=======
from Outliers import remove_outliers_with_isolation_forest
import tkinter.messagebox as tmsg
from tkinter import *
from joblib import load
import pandas as pd
import numpy as np
# Resets the features to 0
def resetFeatures():
for i in range(8):
tv[i].set(0)
features[i].update()
output["text"] = "Enter new astro entity details"
# Uses a Machine Learning(ML) model trained by Bagging Classifier Algorithm
def predictEntity():
try:
if ((tv[0].get() >= 0) and (tv[0].get() <= 360)) and ((tv[1].get() >= -90) and (tv[1].get() <= 90)):
Model = load("E:\\Machine Learning\\Astro Entity Classifier\\Model.joblib")
pre_processor = load("E:\\Machine Learning\\Astro Entity Classifier\\pre_processor.joblib")
features = [tv[0].get(), tv[1].get(), tv[2].get(), tv[3].get(), tv[4].get(), tv[5].get(), tv[6].get(), tv[7].get()]
features_nda = np.array([features])
features_df = pd.DataFrame(features_nda, columns=["alpha","delta","u","g","r","i","z","redshift"])
features_pp_nda = pre_processor.transform(features_df)
features_pp_df = pd.DataFrame(features_pp_nda, columns=features_df.columns)
predicted_entity = Model.predict(features_pp_df)
output["text"] = f"The astro entity with the given details is a \n{predicted_entity[0]}"
elif ((tv[0].get() >= 0) and (tv[0].get() <= 360)) == False:
tmsg.showinfo(title="Warning!", message="The value of alpha is invalid")
output["text"] = "The value of alpha should lie between 0 and 360 degrees"
else:
tmsg.showinfo(title="Warning!", message="The value of delta is invalid")
output["text"] = "The value of delta should lie between -90 and 90 degrees"
except TclError:
tmsg.showinfo(title="Warning!", message="Invalid details have been entered")
output["text"] = "Enter valid details"
# Screen Customization
root = Tk()
root.geometry("950x750")
root.resizable(True, True)
root.minsize(900,750)
root.config(bg="#030303")
root.title("Astro Entity Classifier")
root.iconbitmap("E:\\Machine Learning\\Astro Entity Classifier\\astro_entity.ico")
# Giving Title
f1 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f1.pack(fill=X, padx=50, pady=50)
Label(f1, text="Galaxy-Star-Quasar(GSQ) Identifier", fg="peachpuff", bg="#030303", font="Lucida 25 bold").pack(padx=10, pady=10)
# Creating Entries for Astro Entity Features
f2 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f2.pack(fill=X, ipadx=10, ipady=10, padx=50)
Label(f2, text="1. Enter aplha = Right Ascension angle (at J2000 epoch): " , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=0, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="2. Enter delta = Declination angle (at J2000 epoch):" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=1, column=0, sticky=W, padx=15)
Label(f2, text="3. Enter u = Ultraviolet filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=2, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="4. Enter g = Green filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=3, column=0, sticky=W, padx=15)
Label(f2, text="5. Enter r = Red filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=4, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="6. Enter i = Near Infrared filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=5, column=0, sticky=W, padx=15)
Label(f2, text="7. Enter z = Infrared filter in the photometric system:" , bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=6, column=0, sticky=W, padx=15, pady=10)
Label(f2, text="8. Enter redshift = Value based on the increase in wavelength:", bg="#030303", fg="peachpuff", font=("Lucida", 14, "normal")).grid(row=7, column=0, sticky=W, padx=15)
"""
Source: SDSS_DR18-SDSS_DR17.csv
97298: [358.095259, 56.24256139, 16.88485, 14.28269, 13.58865, 13.03581, 12.93735, -0.000260102, STAR]
"""
tv = [None]*8
features = [None]*8
initial_features = np.array([358.095259, 56.24256139, 16.88485, 14.28269, 13.58865, 13.03581, 12.93735, -0.000260102])
for i in range(8):
tv[i] = DoubleVar()
tv[i].set(initial_features[i])
features[i] = Entry(f2, textvariable = tv[i], font="Lucida 14 normal", bg="thistle", relief=SUNKEN)
if i%2 == 0:
features[i].grid(row=i, column=1, sticky=NSEW, ipady=2, padx=50, pady=10)
else:
features[i].grid(row=i, column=1, sticky=NSEW, ipady=2, padx=50)
Button(f2, text="RESET", command=resetFeatures, font="Lucida 16 bold", activebackground="gold", bg="deepskyblue", width=15, bd=4, relief=SUNKEN).grid(row=10, column=0, sticky=W, padx=30, pady=10, ipady=3)
Button(f2, text="IDENTIFY", command=predictEntity, font="Lucida 16 bold", activebackground="gold", bg="lime", width=15, bd=4, relief=SUNKEN).grid(row=10, column=0, sticky=E, padx=30, pady=10, ipady=3)
for i in range(8):
f2.grid_rowconfigure(i, weight=1, pad=5)
f2.grid_columnconfigure(1, weight=1)
# Labelling the Predicted Entity
f3 = Frame(root, bg="#030303", highlightbackground="thistle", highlightthickness=2)
f3.pack(fill=X, padx=50, pady=20)
output = Label(f3, text="Press RESET for entering new astro entity details", fg="crimson", bg="#030303", font="Lucida 16 bold")
output.pack(padx=10, pady=10)
>>>>>>> 4c06689ce079fb078cb564cdd988ca913f7008bb
root.mainloop()