-
Notifications
You must be signed in to change notification settings - Fork 852
/
Copy pathasimpletradingrule.py
123 lines (84 loc) · 2.58 KB
/
asimpletradingrule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import matplotlib
matplotlib.use("TkAgg")
"""
Work up a minimum example of a trend following system
"""
# Get some data
from sysdata.sim.csv_futures_sim_data import csvFuturesSimData
""""
Let's get some data
We can get data from various places; however for now we're going to use
prepackaged 'legacy' data stored in csv files
"""
data = csvFuturesSimData()
print(data)
"""
We get stuff out of data with methods
"""
print(data.get_instrument_list())
print(data.get_raw_price("EDOLLAR").tail(5))
"""
data can also behave in a dict like manner (though it's not a dict)
"""
print(data["VIX"])
print(data.keys())
"""
Not all the instruments are easily identifiable
"""
print(data.get_instrument_object_with_meta_data("MUMMY"))
"""
... however this will only access prices
(note these prices have already been backadjusted for rolls)
We have extra futures data here
"""
print(data.get_instrument_raw_carry_data("EDOLLAR").tail(6))
"""
Technical note: csvFuturesSimData inherits from FuturesData which itself inherits
from simData
The chain is 'data specific' <- 'asset class specific' <- 'generic'
Let's create a simple trading rule
No capping or scaling
"""
from sysquant.estimators.vol import robust_vol_calc
def calc_ewmac_forecast(price, Lfast, Lslow=None):
"""
Calculate the ewmac trading rule forecast, given a price and EWMA speeds
Lfast, Lslow and vol_lookback
"""
# price: This is the stitched price series
# We can't use the price of the contract we're trading, or the volatility
# will be jumpy
# And we'll miss out on the rolldown. See
# https://qoppac.blogspot.com/2015/05/systems-building-futures-rolling.html
price = price.resample("1B").last()
if Lslow is None:
Lslow = 4 * Lfast
# We don't need to calculate the decay parameter, just use the span
# directly
fast_ewma = price.ewm(span=Lfast).mean()
slow_ewma = price.ewm(span=Lslow).mean()
raw_ewmac = fast_ewma - slow_ewma
vol = robust_vol_calc(price.diff())
return raw_ewmac / vol
"""
Try it out
(this isn't properly scaled at this stage of course)
"""
instrument_code = "VIX"
price = data.daily_prices(instrument_code)
ewmac = calc_ewmac_forecast(price, 32, 128)
ewmac2 = calc_ewmac_forecast(price, 16, 64)
ewmac.columns = ["forecast"]
print(ewmac.tail(5))
from matplotlib.pyplot import show
ewmac.plot()
show()
"""
Did we make money?
"""
from systems.accounts.account_forecast import pandl_for_instrument_forecast
account = pandl_for_instrument_forecast(forecast=ewmac, price=price)
account.curve()
account.curve().plot()
show()
print(account.percent.stats())