forked from experiencor/keras-yolo2
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
139 lines (114 loc) · 5.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#! /usr/bin/env python3
import argparse
import json
import os
import numpy as np
from tensorflow import keras
from keras_yolov2.frontend import YOLO
from keras_yolov2.preprocessing import parse_annotation_xml, parse_annotation_csv
from keras_yolov2.utils import create_backup, enable_memory_growth
argparser = argparse.ArgumentParser(
description='Train and validate YOLO_v2 model on any dataset')
argparser.add_argument(
'-c',
'--conf',
default='config.json',
help='path to configuration file')
def _main_(args):
config_path = args.conf
enable_memory_growth()
with open(config_path) as config_buffer:
config = json.loads(config_buffer.read())
if config['backup']['create_backup']:
config = create_backup(config)
###############################
# Parse the annotations
###############################
if config['parser_annotation_type'] == 'xml':
# parse annotations of the training set
train_imgs, train_labels = parse_annotation_xml(config['train']['train_annot_folder'],
config['train']['train_image_folder'],
config['model']['labels'])
# parse annotations of the validation set, if any, otherwise split the training set
if os.path.exists(config['valid']['valid_annot_folder']):
valid_imgs, valid_labels = parse_annotation_xml(config['valid']['valid_annot_folder'],
config['valid']['valid_image_folder'],
config['model']['labels'])
split = False
else:
split = True
elif config['parser_annotation_type'] == 'csv':
# parse annotations of the training set
train_imgs, train_labels = parse_annotation_csv(config['train']['train_csv_file'],
config['model']['labels'],
config['train']['train_csv_base_path'])
# parse annotations of the validation set, if any, otherwise split the training set
if os.path.exists(config['valid']['valid_csv_file']):
valid_imgs, valid_labels = parse_annotation_csv(config['valid']['valid_csv_file'],
config['model']['labels'],
config['valid']['valid_csv_base_path'])
split = False
else:
split = True
else:
raise ValueError(
"'parser_annotations_type' must be 'xml' or 'csv' not {}.".format(config['parser_annotations_type']))
if split:
train_valid_split = int(0.8 * len(train_imgs))
np.random.shuffle(train_imgs)
valid_imgs = train_imgs[train_valid_split:]
train_imgs = train_imgs[:train_valid_split]
if len(config['model']['labels']) > 0:
overlap_labels = set(config['model']['labels']).intersection(set(train_labels.keys()))
print('Seen labels:\t', train_labels)
print('Given labels:\t', config['model']['labels'])
print('Overlap labels:\t', overlap_labels)
if len(overlap_labels) < len(config['model']['labels']):
print('Some labels have no annotations! Please revise the list of labels in the config.json file!')
return
else:
print('No labels are provided. Train on all seen labels.')
config['model']['labels'] = train_labels.keys()
with open("labels.json", 'w') as outfile:
json.dump({"labels": list(train_labels.keys())}, outfile)
###############################
# Construct the model
###############################
yolo = YOLO(backend=config['model']['backend'],
input_size=(config['model']['input_size_h'], config['model']['input_size_w']),
labels=config['model']['labels'],
anchors=config['model']['anchors'],
gray_mode=config['model']['gray_mode'])
#########################################
# Load the pretrained weights (if any)
#########################################
if os.path.exists(config['train']['pretrained_weights']):
print("Loading pre-trained weights in", config['train']['pretrained_weights'])
yolo.load_weights(config['train']['pretrained_weights'])
###############################
# Start the training process
###############################
yolo.train(train_imgs=train_imgs,
valid_imgs=valid_imgs,
train_times=config['train']['train_times'],
valid_times=config['valid']['valid_times'],
nb_epochs=config['train']['nb_epochs'],
learning_rate=config['train']['learning_rate'],
batch_size=config['train']['batch_size'],
warmup_epochs=config['train']['warmup_epochs'],
object_scale=config['train']['object_scale'],
no_object_scale=config['train']['no_object_scale'],
coord_scale=config['train']['coord_scale'],
class_scale=config['train']['class_scale'],
saved_weights_name=config['train']['saved_weights_name'],
early_stop=config['train']['early_stop'],
workers=config['train']['workers'],
max_queue_size=config['train']['max_queue_size'],
tb_logdir=config['train']['tensorboard_log_dir'],
train_generator_callback=config['train']['callback'],
iou_threshold=config['valid']['iou_threshold'],
score_threshold=config['valid']['score_threshold'],
cosine_decay=config['train']['cosine_decay'])
if __name__ == '__main__':
_args = argparser.parse_args()
_main_(_args)