-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathoemd_iter.m
114 lines (92 loc) · 4.54 KB
/
oemd_iter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [stream] = oemd_iter(stream)
%OEMD_ITER
bound = 3;
nbExtrema = stream(1).nbExtrema;
maxIMF = stream(1).maxIMF;
if(nargin==2)
maxIMF = -1;
end
[minInd, maxInd] = extr(stream(1).data(stream(1).windowTail:end));
minInd=minInd+stream(1).windowTail-1;
maxInd=maxInd+stream(1).windowTail-1;
extrInd = sort([minInd maxInd]);
if maxIMF==0 || (length(extrInd) < nbExtrema) %Not enough extrema to extract IMF
return
end
while length(extrInd) >= nbExtrema %Enough data to compute the corresponding IMFs
if stream(1).windowTail ~= 1 && extrInd(1) ~= stream(1).windowTail+1 %needed to fix issues with extr function
extrInd = [stream(1).windowTail+1 extrInd];
end
newWindowHead=extrInd(nbExtrema);
switch stream(1).emdAlgo
case 0
% Rilling stopping criteria (C code)
[acumIMF]=emdc([],stream(1).data(stream(1).windowTail:newWindowHead+1),[],1);
case 1
% Fix: 10 Siftings (C code)
[acumIMF]=emdc_fix([],stream(1).data(stream(1).windowTail:newWindowHead+1),10,1);
case 2
% Confidence limit stopping criteria (Matlab code)
[acumIMF] = emd(stream(1).data(stream(1).windowTail:newWindowHead+1),'MAXMODES',1,'FIX_H',4);
otherwise
error('EMD function unknown')
end
%Store the computed mean IMF
prevWindowHead = stream(1).windowHead;
if stream(1).windowTail ~= 1
ind = zeros(1,length(extrInd(1)-stream(1).windowTail:extrInd(nbExtrema)-stream(1).windowTail));
lastExtrema = (1:nbExtrema-1)+1-(nbExtrema+1)/2;
i1 = 1+extrInd(1:nbExtrema-1)-stream(1).windowTail;
i2 = extrInd(2:nbExtrema)-stream(1).windowTail;
len = 1+i2(1:nbExtrema-1)-i1(1:nbExtrema-1);
for i=1:nbExtrema-1
ind(i1(i):i2(i)) = ((1/len(i))+(lastExtrema(i)-1):1/len(i):lastExtrema(i));
end
ind = ind.*(bound/((nbExtrema-1)/2));
ind(1) = -bound;
w = (1/(sqrt(2*pi))*exp(-1/2*ind.^2)) - (1/(sqrt(2*pi))*exp(-1/2*bound^2)); % normal distribution with sigma = 1
weightedIMF = w.*acumIMF(1,2:end-1);
%Concatenate and sum with the IMF previously computed
stream(1).imf(stream(1).windowTail+1:stream(1).windowTail+length(weightedIMF)) = [stream(1).imf(stream(1).windowTail+1:prevWindowHead-1)+(weightedIMF(1:(prevWindowHead-1)-stream(1).windowTail)) weightedIMF(prevWindowHead-stream(1).windowTail:end)];
stream(1).weights(stream(1).windowTail+1:stream(1).windowTail+length(weightedIMF)) = [stream(1).weights(stream(1).windowTail+1:prevWindowHead-1)+(w(1:(prevWindowHead-1)-stream(1).windowTail)) w(prevWindowHead-stream(1).windowTail:end)];
%Normalize
stream(1).imf(stream(1).windowTail+1:extrInd(2)-1) = stream(1).imf(stream(1).windowTail+1:extrInd(2)-1)./stream(1).weights(stream(1).windowTail+1:extrInd(2)-1);
else
weights = zeros(1,length(1:extrInd(nbExtrema)-1));
weights(1:extrInd(2)) = 1;
for i=2:nbExtrema-1
indPart = 1+extrInd(i):extrInd(i+1);
dataLength = length(indPart);
w = zeros(1,length(indPart));
for j=i:nbExtrema-1
lastExtrema = j+1-(nbExtrema+1)/2;
indTmp = ((1/dataLength)+(lastExtrema-1):1/dataLength:lastExtrema);
indTmp = indTmp.*(bound/((nbExtrema-1)/2));
w = w+(1/(sqrt(2*pi))*exp(-1/2*indTmp.^2)) - (1/(sqrt(2*pi))*exp(-1/2*bound^2));
end
weights(indPart) = w;
end
stream(1).imf = acumIMF(1,1:end-1).*weights;
stream(1).weights = weights;
end
%Store the residual
nextWindowTail = extrInd(2)-1;
if stream(1).windowTail ~= 1
residualTail = stream(1).data(stream(1).windowTail+1:nextWindowTail)-stream(1).imf(stream(1).windowTail+1:nextWindowTail);
else
residualTail = stream(1).data(1:nextWindowTail)-stream(1).imf(1:nextWindowTail) ;
end
if size(stream,2)<2 % If we went through all the noise IMF we stop adding noise
stream(2)=struct('data',[],'imf',[],'windowTail',1,'windowHead',1, 'weights', [], 'emdAlgo', stream(1).emdAlgo,'nbExtrema', stream(1).nbExtrema,'maxIMF',stream(1).maxIMF-1);
end
stream(2).data(end+1:end+length(residualTail)) = residualTail;
%Slide the window
stream(1).windowTail = nextWindowTail;
stream(1).windowHead = newWindowHead;
%Remove the last extrema
extrInd = extrInd(2:end);
end
%Recursive call for the next IMF
% 'recursion'
stream = [stream(1) oemd_iter(stream(2:end))];
end