-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathnode_features.py
101 lines (76 loc) · 2.87 KB
/
node_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
This example how request for each segmentation hypotheses features and use them
to compute a custom edge weight between nodes, in this case, the cosine distance.
For this we consider a 3D image as a 2D video, it's more a didactic example than a real use case.
"""
import napari
import numpy as np
from scipy.spatial.distance import cdist
from skimage import morphology as morph
from skimage.data import cells3d
from ultrack import MainConfig, Tracker
def main() -> None:
config = MainConfig()
config.data_config.working_dir = "/tmp/ultrack/."
# removing small segments
config.segmentation_config.min_area = 1_000
# disable division
config.tracking_config.division_weight = -1_000_000
tracker = Tracker(config)
# mocking a 3D image as 2D video
image = cells3d()[:, 1] # nuclei
# simple foreground extraction
foreground = image > image.mean()
foreground = morph.opening(foreground, morph.disk(3)[None, :])
foreground = morph.closing(foreground, morph.disk(3)[None, :])
# contour as inverse of the image
contour = 1 - image / image.max()
tracker.segment(
foreground=foreground,
contours=contour,
image=image,
properties=["equivalent_diameter_area", "intensity_mean", "inertia_tensor"],
overwrite=True,
)
df = tracker.get_nodes_features()
# extending properties, some include -0-0, -0-1, -1-0, -1-1
cols = [
"y",
"x",
"area",
"intensity_mean",
"inertia_tensor-0-0",
"inertia_tensor-0-1",
"inertia_tensor-1-0",
"inertia_tensor-1-1",
"equivalent_diameter_area",
]
# normalizing features
df[cols] -= df[cols].mean()
df[cols] /= df[cols].std()
df_by_t = df.groupby("t")
t_max = df["t"].max()
# iterating over time and querying pair of frames
for t in range(t_max + 1):
try:
# some frames might be without nodes
source_df = df_by_t.get_group(t)
target_df = df_by_t.get_group(t + 1)
except KeyError:
continue
# the higher the weights the more likely the link
weights = 1 - cdist(source_df[cols], target_df[cols], "cosine").ravel()
source_ids = np.repeat(source_df.index.to_numpy(), len(target_df))
target_ids = np.tile(target_df.index.to_numpy(), len(source_df))
# for very dense graph this not recommended because the ILP problem will be huge
tracker.add_links(sources=source_ids, targets=target_ids, weights=weights)
tracker.solve()
tracks, graph = tracker.to_tracks_layer()
segments = tracker.to_zarr()
viewer = napari.Viewer()
viewer.add_image(image, name="cells")
viewer.add_tracks(tracks[["track_id", "t", "y", "x"]], name="tracks", graph=graph)
viewer.add_labels(segments, name="segments")
napari.run()
if __name__ == "__main__":
main()