-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtoco_deit-b_coco_80k.log
3838 lines (3835 loc) · 252 KB
/
toco_deit-b_coco_80k.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2022-10-31 14:28:55,575 - dist_train_coco_seg_neg.py - INFO: Pytorch version: 1.10.0a0+ecc3718
2022-10-31 14:28:56,504 - dist_train_coco_seg_neg.py - INFO: GPU type: A100-SXM4-40GB
2022-10-31 14:28:56,505 - dist_train_coco_seg_neg.py - INFO:
args: Namespace(backbone='deit_base_patch16_224', backend='nccl', betas=(0.9, 0.999), bkg_thre=0.45, cam_scales=(1.0, 0.5, 1.5), ckpt_dir='workdir_coco_final/2022-10-31-14-28-55-573606/checkpoints', crop_size=448, eval_iters=4000, high_thre=0.65, ignore_index=255, img_folder='../coco2014', label_folder='../MSCOCO/SegmentationClass', list_folder='datasets/coco', local_crop_size=96, local_rank=0, log_iters=200, low_thre=0.25, lr=6e-05, max_iters=80000, num_classes=81, num_workers=10, optimizer='PolyWarmupAdamW', pooling='gmp', power=0.9, pred_dir='workdir_coco_final/2022-10-31-14-28-55-573606/predictions', pretrained=True, save_ckpt=True, scales=(0.5, 2), seed=0, spg=2, temp=0.5, train_set='train', val_set='val_part', w_reg=0.05, warmup_iters=1500, warmup_lr=1e-06, work_dir='workdir_coco_final/2022-10-31-14-28-55-573606', wt_decay=0.01)
2022-10-31 14:28:56,505 - distributed_c10d.py - INFO: Added key: store_based_barrier_key:1 to store for rank: 0
2022-10-31 14:28:56,516 - distributed_c10d.py - INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 4 nodes.
2022-10-31 14:28:56,516 - dist_train_coco_seg_neg.py - INFO: Total gpus: 4, samples per gpu: 2...
2022-10-31 14:29:01,267 - dist_train_coco_seg_neg.py - INFO:
Optimizer:
PolyWarmupAdamW (
Parameter Group 0
amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 6e-05
weight_decay: 0.01
Parameter Group 1
amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 6e-05
weight_decay: 0.01
Parameter Group 2
amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 0.0006000000000000001
weight_decay: 0.01
Parameter Group 3
amsgrad: False
betas: (0.9, 0.999)
eps: 1e-08
lr: 0.0006000000000000001
weight_decay: 0.01
)
2022-10-31 14:32:29,864 - dist_train_coco_seg_neg.py - INFO: Iter: 200; Elasped: 0:03:33; ETA: 23:36:27; LR: 7.960e-06; cls_loss: 0.3779, cls_loss_aux: 0.6435, ptc_loss: 0.4377, ctc_loss: 0.6040, seg_loss: 4.2811...
2022-10-31 14:35:51,606 - dist_train_coco_seg_neg.py - INFO: Iter: 400; Elasped: 0:06:55; ETA: 22:56:25; LR: 1.596e-05; cls_loss: 0.1342, cls_loss_aux: 0.1400, ptc_loss: 0.4358, ctc_loss: 0.4829, seg_loss: 4.2613...
2022-10-31 14:39:12,905 - dist_train_coco_seg_neg.py - INFO: Iter: 600; Elasped: 0:10:16; ETA: 22:38:37; LR: 2.396e-05; cls_loss: 0.1270, cls_loss_aux: 0.1322, ptc_loss: 0.4133, ctc_loss: 0.4124, seg_loss: 4.3433...
2022-10-31 14:42:34,557 - dist_train_coco_seg_neg.py - INFO: Iter: 800; Elasped: 0:13:38; ETA: 22:29:42; LR: 3.196e-05; cls_loss: 0.1132, cls_loss_aux: 0.1186, ptc_loss: 0.3747, ctc_loss: 0.3180, seg_loss: 4.3280...
2022-10-31 14:45:55,976 - dist_train_coco_seg_neg.py - INFO: Iter: 1000; Elasped: 0:16:59; ETA: 22:21:41; LR: 3.996e-05; cls_loss: 0.1049, cls_loss_aux: 0.1132, ptc_loss: 0.3235, ctc_loss: 0.3186, seg_loss: 4.2869...
2022-10-31 14:49:17,382 - dist_train_coco_seg_neg.py - INFO: Iter: 1200; Elasped: 0:20:21; ETA: 22:16:19; LR: 4.796e-05; cls_loss: 0.0894, cls_loss_aux: 0.0987, ptc_loss: 0.2876, ctc_loss: 0.3260, seg_loss: 4.3210...
2022-10-31 14:52:38,801 - dist_train_coco_seg_neg.py - INFO: Iter: 1400; Elasped: 0:23:42; ETA: 22:10:35; LR: 5.596e-05; cls_loss: 0.0856, cls_loss_aux: 0.0995, ptc_loss: 0.2857, ctc_loss: 0.2489, seg_loss: 4.2421...
2022-10-31 14:55:59,908 - dist_train_coco_seg_neg.py - INFO: Iter: 1600; Elasped: 0:27:03; ETA: 22:05:27; LR: 5.892e-05; cls_loss: 0.0813, cls_loss_aux: 0.0980, ptc_loss: 0.2767, ctc_loss: 0.2548, seg_loss: 4.2585...
2022-10-31 14:59:21,132 - dist_train_coco_seg_neg.py - INFO: Iter: 1800; Elasped: 0:30:25; ETA: 22:01:26; LR: 5.878e-05; cls_loss: 0.0843, cls_loss_aux: 0.1010, ptc_loss: 0.2797, ctc_loss: 0.2192, seg_loss: 4.0973...
2022-10-31 15:02:42,562 - dist_train_coco_seg_neg.py - INFO: Iter: 2000; Elasped: 0:33:46; ETA: 21:56:54; LR: 5.865e-05; cls_loss: 0.0707, cls_loss_aux: 0.0849, ptc_loss: 0.2573, ctc_loss: 0.2301, seg_loss: 4.2279...
2022-10-31 15:06:04,249 - dist_train_coco_seg_neg.py - INFO: Iter: 2200; Elasped: 0:37:08; ETA: 21:53:10; LR: 5.851e-05; cls_loss: 0.0764, cls_loss_aux: 0.0915, ptc_loss: 0.2616, ctc_loss: 0.2045, seg_loss: 4.1408...
2022-10-31 15:09:25,877 - dist_train_coco_seg_neg.py - INFO: Iter: 2400; Elasped: 0:40:29; ETA: 21:48:57; LR: 5.838e-05; cls_loss: 0.0745, cls_loss_aux: 0.0887, ptc_loss: 0.2556, ctc_loss: 0.1522, seg_loss: 4.1501...
2022-10-31 15:12:47,700 - dist_train_coco_seg_neg.py - INFO: Iter: 2600; Elasped: 0:43:51; ETA: 21:45:22; LR: 5.824e-05; cls_loss: 0.0717, cls_loss_aux: 0.0851, ptc_loss: 0.2522, ctc_loss: 0.1760, seg_loss: 4.1176...
2022-10-31 15:16:09,692 - dist_train_coco_seg_neg.py - INFO: Iter: 2800; Elasped: 0:47:13; ETA: 21:41:49; LR: 5.811e-05; cls_loss: 0.0767, cls_loss_aux: 0.0905, ptc_loss: 0.2383, ctc_loss: 0.1576, seg_loss: 4.0278...
2022-10-31 15:19:31,545 - dist_train_coco_seg_neg.py - INFO: Iter: 3000; Elasped: 0:50:35; ETA: 21:38:18; LR: 5.797e-05; cls_loss: 0.0688, cls_loss_aux: 0.0804, ptc_loss: 0.2524, ctc_loss: 0.1782, seg_loss: 4.0989...
2022-10-31 15:22:53,518 - dist_train_coco_seg_neg.py - INFO: Iter: 3200; Elasped: 0:53:57; ETA: 21:34:48; LR: 5.784e-05; cls_loss: 0.0667, cls_loss_aux: 0.0777, ptc_loss: 0.2358, ctc_loss: 0.1661, seg_loss: 3.9988...
2022-10-31 15:26:15,474 - dist_train_coco_seg_neg.py - INFO: Iter: 3400; Elasped: 0:57:19; ETA: 21:31:18; LR: 5.770e-05; cls_loss: 0.0725, cls_loss_aux: 0.0830, ptc_loss: 0.2455, ctc_loss: 0.1363, seg_loss: 3.8911...
2022-10-31 15:29:37,596 - dist_train_coco_seg_neg.py - INFO: Iter: 3600; Elasped: 1:00:41; ETA: 21:27:50; LR: 5.757e-05; cls_loss: 0.0731, cls_loss_aux: 0.0831, ptc_loss: 0.2679, ctc_loss: 0.1256, seg_loss: 3.9052...
2022-10-31 15:32:59,496 - dist_train_coco_seg_neg.py - INFO: Iter: 3800; Elasped: 1:04:03; ETA: 21:24:22; LR: 5.743e-05; cls_loss: 0.0713, cls_loss_aux: 0.0831, ptc_loss: 0.2728, ctc_loss: 0.1295, seg_loss: 3.8695...
2022-10-31 15:36:21,646 - dist_train_coco_seg_neg.py - INFO: Iter: 4000; Elasped: 1:07:25; ETA: 21:20:55; LR: 5.729e-05; cls_loss: 0.0695, cls_loss_aux: 0.0764, ptc_loss: 0.2392, ctc_loss: 0.1727, seg_loss: 3.9248...
2022-10-31 15:36:21,647 - dist_train_coco_seg_neg.py - INFO: Validating...
2022-10-31 15:54:02,077 - dist_train_coco_seg_neg.py - INFO: val cls score: 0.710295
2022-10-31 15:54:02,079 - dist_train_coco_seg_neg.py - INFO:
+----------------+--------+---------+----------+
| Class | CAM | aux_CAM | Seg_Pred |
+================+========+=========+==========+
| _background_ | 70.694 | 53.930 | 0.570 |
+----------------+--------+---------+----------+
| person | 52.101 | 39.699 | 0.000 |
+----------------+--------+---------+----------+
| bicycle | 39.307 | 22.295 | 0 |
+----------------+--------+---------+----------+
| car | 39.026 | 24.467 | 0 |
+----------------+--------+---------+----------+
| motorcycle | 61.563 | 44.693 | 0.095 |
+----------------+--------+---------+----------+
| airplane | 62.376 | 57.416 | 0 |
+----------------+--------+---------+----------+
| bus | 63.496 | 54.102 | 0.017 |
+----------------+--------+---------+----------+
| train | 33.923 | 20.632 | 0 |
+----------------+--------+---------+----------+
| truck | 40.956 | 23.421 | 0.107 |
+----------------+--------+---------+----------+
| boat | 30.966 | 22.992 | 0.517 |
+----------------+--------+---------+----------+
| traffic light | 13.341 | 4.614 | 0 |
+----------------+--------+---------+----------+
| fire hydrant | 50.081 | 22.811 | 0.000 |
+----------------+--------+---------+----------+
| stop sign | 37.721 | 22.556 | 0.090 |
+----------------+--------+---------+----------+
| parking meter | 55.719 | 48.421 | 0 |
+----------------+--------+---------+----------+
| bench | 27.954 | 20.447 | 0.542 |
+----------------+--------+---------+----------+
| bird | 29.332 | 19.686 | 0.005 |
+----------------+--------+---------+----------+
| cat | 73.402 | 56.676 | 0.006 |
+----------------+--------+---------+----------+
| dog | 68.511 | 24.420 | 0.340 |
+----------------+--------+---------+----------+
| horse | 66.865 | 32.495 | 0.012 |
+----------------+--------+---------+----------+
| sheep | 64.481 | 60.627 | 0 |
+----------------+--------+---------+----------+
| cow | 70.735 | 48.098 | 0 |
+----------------+--------+---------+----------+
| elephant | 72.612 | 62.900 | 0 |
+----------------+--------+---------+----------+
| bear | 69.754 | 57.962 | 0 |
+----------------+--------+---------+----------+
| zebra | 77.658 | 73.215 | 0.044 |
+----------------+--------+---------+----------+
| giraffe | 74.080 | 60.425 | 0.022 |
+----------------+--------+---------+----------+
| backpack | 11.506 | 8.278 | 0.034 |
+----------------+--------+---------+----------+
| umbrella | 60.977 | 56.927 | 0.001 |
+----------------+--------+---------+----------+
| handbag | 8.246 | 9.159 | 0 |
+----------------+--------+---------+----------+
| tie | 12.377 | 11.196 | 0 |
+----------------+--------+---------+----------+
| suitcase | 43.287 | 34.840 | 0.104 |
+----------------+--------+---------+----------+
| frisbee | 13.934 | 3.712 | 0.030 |
+----------------+--------+---------+----------+
| skis | 2.762 | 2.686 | 0.090 |
+----------------+--------+---------+----------+
| snowboard | 4.024 | 6.070 | 0 |
+----------------+--------+---------+----------+
| sports ball | 2.288 | 2.044 | 0.017 |
+----------------+--------+---------+----------+
| kite | 21.955 | 20.881 | 0.004 |
+----------------+--------+---------+----------+
| baseball bat | 0.914 | 0.741 | 0.001 |
+----------------+--------+---------+----------+
| baseball glove | 3.798 | 2.012 | 0.006 |
+----------------+--------+---------+----------+
| skateboard | 10.266 | 9.918 | 0.003 |
+----------------+--------+---------+----------+
| surfboard | 6.763 | 7.330 | 0 |
+----------------+--------+---------+----------+
| tennis racket | 1.982 | 2.418 | 0 |
+----------------+--------+---------+----------+
| bottle | 12.181 | 6.272 | 0.043 |
+----------------+--------+---------+----------+
| wine glass | 26.047 | 11.253 | 0 |
+----------------+--------+---------+----------+
| cup | 11.629 | 11.126 | 0 |
+----------------+--------+---------+----------+
| fork | 0.998 | 2.168 | 0 |
+----------------+--------+---------+----------+
| knife | 1.791 | 3.750 | 0 |
+----------------+--------+---------+----------+
| spoon | 2.226 | 2.412 | 0 |
+----------------+--------+---------+----------+
| bowl | 24.023 | 20.987 | 4.183 |
+----------------+--------+---------+----------+
| banana | 63.583 | 43.621 | 0.006 |
+----------------+--------+---------+----------+
| apple | 39.964 | 27.628 | 0.022 |
+----------------+--------+---------+----------+
| sandwich | 49.464 | 41.436 | 0 |
+----------------+--------+---------+----------+
| orange | 61.675 | 51.478 | 0 |
+----------------+--------+---------+----------+
| broccoli | 49.286 | 50.583 | 0.006 |
+----------------+--------+---------+----------+
| carrot | 18.446 | 12.793 | 0.081 |
+----------------+--------+---------+----------+
| hot dog | 57.946 | 39.709 | 0.029 |
+----------------+--------+---------+----------+
| pizza | 70.435 | 61.604 | 0.000 |
+----------------+--------+---------+----------+
| donut | 74.198 | 32.273 | 0.012 |
+----------------+--------+---------+----------+
| cake | 50.858 | 36.442 | 0 |
+----------------+--------+---------+----------+
| chair | 10.906 | 15.149 | 0.120 |
+----------------+--------+---------+----------+
| couch | 23.558 | 24.248 | 0 |
+----------------+--------+---------+----------+
| potted plant | 23.234 | 18.192 | 0.094 |
+----------------+--------+---------+----------+
| bed | 49.544 | 50.315 | 0 |
+----------------+--------+---------+----------+
| dining table | 23.150 | 35.093 | 0.000 |
+----------------+--------+---------+----------+
| toilet | 39.262 | 24.561 | 0.014 |
+----------------+--------+---------+----------+
| tv | 19.863 | 27.028 | 0 |
+----------------+--------+---------+----------+
| laptop | 40.175 | 36.390 | 0.001 |
+----------------+--------+---------+----------+
| mouse | 13.969 | 8.764 | 0.036 |
+----------------+--------+---------+----------+
| remote | 17.191 | 6.481 | 0 |
+----------------+--------+---------+----------+
| keyboard | 33.574 | 25.575 | 0.450 |
+----------------+--------+---------+----------+
| cell phone | 30.372 | 8.679 | 0.004 |
+----------------+--------+---------+----------+
| microwave | 30.892 | 10.540 | 0.109 |
+----------------+--------+---------+----------+
| oven | 31.079 | 27.340 | 0.007 |
+----------------+--------+---------+----------+
| toaster | 6.424 | 6.161 | 0 |
+----------------+--------+---------+----------+
| sink | 15.891 | 10.435 | 0.428 |
+----------------+--------+---------+----------+
| refrigerator | 45.086 | 35.241 | 0 |
+----------------+--------+---------+----------+
| book | 17.374 | 21.185 | 0.092 |
+----------------+--------+---------+----------+
| clock | 18.310 | 12.621 | 0 |
+----------------+--------+---------+----------+
| vase | 22.924 | 11.878 | 0 |
+----------------+--------+---------+----------+
| scissors | 25.926 | 7.413 | 0.004 |
+----------------+--------+---------+----------+
| teddy bear | 61.897 | 54.259 | 0 |
+----------------+--------+---------+----------+
| hair drier | 11.275 | 3.474 | 0 |
+----------------+--------+---------+----------+
| toothbrush | 11.200 | 4.756 | 0.015 |
+----------------+--------+---------+----------+
| mIoU | 34.439 | 25.908 | 0.104 |
+----------------+--------+---------+----------+
2022-10-31 15:57:16,505 - dist_train_coco_seg_neg.py - INFO: Iter: 4200; Elasped: 1:28:20; ETA: 1 day, 2:34:12; LR: 5.716e-05; cls_loss: 0.0671, cls_loss_aux: 0.0757, ptc_loss: 0.2720, ctc_loss: 0.1508, seg_loss: 3.9471...
2022-10-31 16:00:30,750 - dist_train_coco_seg_neg.py - INFO: Iter: 4400; Elasped: 1:31:34; ETA: 1 day, 2:13:16; LR: 5.702e-05; cls_loss: 0.0673, cls_loss_aux: 0.0753, ptc_loss: 0.2435, ctc_loss: 0.1656, seg_loss: 4.0655...
2022-10-31 16:03:45,103 - dist_train_coco_seg_neg.py - INFO: Iter: 4600; Elasped: 1:34:49; ETA: 1 day, 1:54:10; LR: 5.689e-05; cls_loss: 0.0717, cls_loss_aux: 0.0801, ptc_loss: 0.2383, ctc_loss: 0.1525, seg_loss: 4.0651...
2022-10-31 16:06:59,719 - dist_train_coco_seg_neg.py - INFO: Iter: 4800; Elasped: 1:38:03; ETA: 1 day, 1:36:07; LR: 5.675e-05; cls_loss: 0.0691, cls_loss_aux: 0.0745, ptc_loss: 0.2502, ctc_loss: 0.1557, seg_loss: 3.8894...
2022-10-31 16:10:14,271 - dist_train_coco_seg_neg.py - INFO: Iter: 5000; Elasped: 1:41:18; ETA: 1 day, 1:19:30; LR: 5.661e-05; cls_loss: 0.0700, cls_loss_aux: 0.0759, ptc_loss: 0.2548, ctc_loss: 0.1702, seg_loss: 3.9738...
2022-10-31 16:13:28,095 - dist_train_coco_seg_neg.py - INFO: Iter: 5200; Elasped: 1:44:32; ETA: 1 day, 1:03:40; LR: 5.648e-05; cls_loss: 0.0692, cls_loss_aux: 0.0758, ptc_loss: 0.2342, ctc_loss: 0.1816, seg_loss: 4.0069...
2022-10-31 16:16:41,859 - dist_train_coco_seg_neg.py - INFO: Iter: 5400; Elasped: 1:47:45; ETA: 1 day, 0:48:32; LR: 5.634e-05; cls_loss: 0.0674, cls_loss_aux: 0.0737, ptc_loss: 0.2200, ctc_loss: 0.1753, seg_loss: 3.9745...
2022-10-31 16:19:55,256 - dist_train_coco_seg_neg.py - INFO: Iter: 5600; Elasped: 1:50:59; ETA: 1 day, 0:34:29; LR: 5.621e-05; cls_loss: 0.0691, cls_loss_aux: 0.0745, ptc_loss: 0.2359, ctc_loss: 0.1516, seg_loss: 4.0180...
2022-10-31 16:23:08,823 - dist_train_coco_seg_neg.py - INFO: Iter: 5800; Elasped: 1:54:12; ETA: 1 day, 0:20:58; LR: 5.607e-05; cls_loss: 0.0657, cls_loss_aux: 0.0724, ptc_loss: 0.2283, ctc_loss: 0.1922, seg_loss: 4.1142...
2022-10-31 16:26:22,713 - dist_train_coco_seg_neg.py - INFO: Iter: 6000; Elasped: 1:57:26; ETA: 1 day, 0:08:20; LR: 5.594e-05; cls_loss: 0.0658, cls_loss_aux: 0.0728, ptc_loss: 0.2267, ctc_loss: 0.1892, seg_loss: 4.1061...
2022-10-31 16:29:36,650 - dist_train_coco_seg_neg.py - INFO: Iter: 6200; Elasped: 2:00:40; ETA: 23:56:19; LR: 5.580e-05; cls_loss: 0.0620, cls_loss_aux: 0.0675, ptc_loss: 0.2231, ctc_loss: 0.1941, seg_loss: 4.1289...
2022-10-31 16:32:50,662 - dist_train_coco_seg_neg.py - INFO: Iter: 6400; Elasped: 2:03:54; ETA: 23:44:51; LR: 5.566e-05; cls_loss: 0.0634, cls_loss_aux: 0.0697, ptc_loss: 0.2128, ctc_loss: 0.2225, seg_loss: 4.2277...
2022-10-31 16:36:04,582 - dist_train_coco_seg_neg.py - INFO: Iter: 6600; Elasped: 2:07:08; ETA: 23:33:52; LR: 5.553e-05; cls_loss: 0.0631, cls_loss_aux: 0.0684, ptc_loss: 0.2090, ctc_loss: 0.2294, seg_loss: 4.2272...
2022-10-31 16:39:18,573 - dist_train_coco_seg_neg.py - INFO: Iter: 6800; Elasped: 2:10:22; ETA: 23:23:21; LR: 5.539e-05; cls_loss: 0.0680, cls_loss_aux: 0.0735, ptc_loss: 0.2182, ctc_loss: 0.2037, seg_loss: 4.0865...
2022-10-31 16:42:32,763 - dist_train_coco_seg_neg.py - INFO: Iter: 7000; Elasped: 2:13:36; ETA: 23:13:15; LR: 5.525e-05; cls_loss: 0.0629, cls_loss_aux: 0.0679, ptc_loss: 0.2145, ctc_loss: 0.2159, seg_loss: 4.2749...
2022-10-31 16:45:46,716 - dist_train_coco_seg_neg.py - INFO: Iter: 7200; Elasped: 2:16:50; ETA: 23:03:32; LR: 5.512e-05; cls_loss: 0.0700, cls_loss_aux: 0.0769, ptc_loss: 0.2191, ctc_loss: 0.1866, seg_loss: 4.1860...
2022-10-31 16:49:00,827 - dist_train_coco_seg_neg.py - INFO: Iter: 7400; Elasped: 2:20:04; ETA: 22:54:10; LR: 5.498e-05; cls_loss: 0.0650, cls_loss_aux: 0.0698, ptc_loss: 0.2096, ctc_loss: 0.2298, seg_loss: 4.1406...
2022-10-31 16:52:14,669 - dist_train_coco_seg_neg.py - INFO: Iter: 7600; Elasped: 2:23:18; ETA: 22:45:07; LR: 5.485e-05; cls_loss: 0.0699, cls_loss_aux: 0.0790, ptc_loss: 0.2461, ctc_loss: 0.1799, seg_loss: 4.1099...
2022-10-31 16:55:28,581 - dist_train_coco_seg_neg.py - INFO: Iter: 7800; Elasped: 2:26:32; ETA: 22:36:22; LR: 5.471e-05; cls_loss: 0.0634, cls_loss_aux: 0.0704, ptc_loss: 0.2460, ctc_loss: 0.1703, seg_loss: 4.1309...
2022-10-31 16:58:42,319 - dist_train_coco_seg_neg.py - INFO: Iter: 8000; Elasped: 2:29:46; ETA: 22:27:54; LR: 5.457e-05; cls_loss: 0.0657, cls_loss_aux: 0.0715, ptc_loss: 0.2290, ctc_loss: 0.1610, seg_loss: 4.0879...
2022-10-31 16:58:42,322 - dist_train_coco_seg_neg.py - INFO: Validating...
2022-10-31 17:16:25,936 - dist_train_coco_seg_neg.py - INFO: val cls score: 0.729380
2022-10-31 17:16:25,938 - dist_train_coco_seg_neg.py - INFO:
+----------------+--------+---------+----------+
| Class | CAM | aux_CAM | Seg_Pred |
+================+========+=========+==========+
| _background_ | 68.435 | 55.659 | 0.533 |
+----------------+--------+---------+----------+
| person | 49.205 | 40.500 | 0.012 |
+----------------+--------+---------+----------+
| bicycle | 41.546 | 39.195 | 0 |
+----------------+--------+---------+----------+
| car | 42.285 | 21.218 | 0 |
+----------------+--------+---------+----------+
| motorcycle | 61.185 | 55.679 | 0.169 |
+----------------+--------+---------+----------+
| airplane | 56.546 | 55.607 | 0 |
+----------------+--------+---------+----------+
| bus | 62.824 | 52.693 | 0.005 |
+----------------+--------+---------+----------+
| train | 31.548 | 30.659 | 0 |
+----------------+--------+---------+----------+
| truck | 44.835 | 26.508 | 0.025 |
+----------------+--------+---------+----------+
| boat | 29.303 | 27.803 | 0.327 |
+----------------+--------+---------+----------+
| traffic light | 12.872 | 5.258 | 0 |
+----------------+--------+---------+----------+
| fire hydrant | 49.993 | 36.193 | 0.000 |
+----------------+--------+---------+----------+
| stop sign | 41.145 | 32.120 | 0.092 |
+----------------+--------+---------+----------+
| parking meter | 63.335 | 36.407 | 0 |
+----------------+--------+---------+----------+
| bench | 38.099 | 23.325 | 0.490 |
+----------------+--------+---------+----------+
| bird | 41.377 | 23.187 | 0.056 |
+----------------+--------+---------+----------+
| cat | 77.828 | 69.961 | 0.000 |
+----------------+--------+---------+----------+
| dog | 66.684 | 34.436 | 0.346 |
+----------------+--------+---------+----------+
| horse | 61.197 | 34.165 | 0 |
+----------------+--------+---------+----------+
| sheep | 66.810 | 61.034 | 0 |
+----------------+--------+---------+----------+
| cow | 68.873 | 49.912 | 0.000 |
+----------------+--------+---------+----------+
| elephant | 61.813 | 47.513 | 0 |
+----------------+--------+---------+----------+
| bear | 75.437 | 66.081 | 0 |
+----------------+--------+---------+----------+
| zebra | 76.835 | 75.395 | 0.000 |
+----------------+--------+---------+----------+
| giraffe | 73.708 | 67.933 | 0.000 |
+----------------+--------+---------+----------+
| backpack | 9.985 | 9.463 | 0.007 |
+----------------+--------+---------+----------+
| umbrella | 48.035 | 43.344 | 0.002 |
+----------------+--------+---------+----------+
| handbag | 9.570 | 8.486 | 0 |
+----------------+--------+---------+----------+
| tie | 11.830 | 12.411 | 0 |
+----------------+--------+---------+----------+
| suitcase | 46.984 | 49.932 | 0.160 |
+----------------+--------+---------+----------+
| frisbee | 10.940 | 7.992 | 0.119 |
+----------------+--------+---------+----------+
| skis | 2.493 | 2.513 | 0.346 |
+----------------+--------+---------+----------+
| snowboard | 3.137 | 7.471 | 0 |
+----------------+--------+---------+----------+
| sports ball | 3.351 | 2.476 | 0.018 |
+----------------+--------+---------+----------+
| kite | 19.482 | 21.447 | 0.000 |
+----------------+--------+---------+----------+
| baseball bat | 0.729 | 1.029 | 0.001 |
+----------------+--------+---------+----------+
| baseball glove | 1.215 | 1.860 | 0.003 |
+----------------+--------+---------+----------+
| skateboard | 7.469 | 12.479 | 0.014 |
+----------------+--------+---------+----------+
| surfboard | 5.231 | 7.375 | 0 |
+----------------+--------+---------+----------+
| tennis racket | 2.599 | 2.867 | 0.009 |
+----------------+--------+---------+----------+
| bottle | 15.728 | 7.914 | 0.098 |
+----------------+--------+---------+----------+
| wine glass | 23.336 | 20.487 | 0 |
+----------------+--------+---------+----------+
| cup | 11.023 | 9.134 | 0 |
+----------------+--------+---------+----------+
| fork | 1.435 | 2.897 | 0 |
+----------------+--------+---------+----------+
| knife | 2.916 | 5.080 | 0 |
+----------------+--------+---------+----------+
| spoon | 2.134 | 1.913 | 0 |
+----------------+--------+---------+----------+
| bowl | 27.077 | 22.793 | 4.201 |
+----------------+--------+---------+----------+
| banana | 63.206 | 47.449 | 0.026 |
+----------------+--------+---------+----------+
| apple | 49.050 | 29.190 | 0.114 |
+----------------+--------+---------+----------+
| sandwich | 45.497 | 34.199 | 0.006 |
+----------------+--------+---------+----------+
| orange | 60.700 | 48.080 | 0.001 |
+----------------+--------+---------+----------+
| broccoli | 46.564 | 47.620 | 0.007 |
+----------------+--------+---------+----------+
| carrot | 21.189 | 18.877 | 0.192 |
+----------------+--------+---------+----------+
| hot dog | 52.414 | 34.975 | 0.049 |
+----------------+--------+---------+----------+
| pizza | 68.814 | 59.340 | 0.000 |
+----------------+--------+---------+----------+
| donut | 72.725 | 52.115 | 0.002 |
+----------------+--------+---------+----------+
| cake | 51.398 | 36.304 | 0 |
+----------------+--------+---------+----------+
| chair | 11.858 | 13.939 | 0.069 |
+----------------+--------+---------+----------+
| couch | 26.564 | 25.136 | 0.001 |
+----------------+--------+---------+----------+
| potted plant | 25.389 | 15.242 | 0.058 |
+----------------+--------+---------+----------+
| bed | 54.849 | 48.308 | 0.008 |
+----------------+--------+---------+----------+
| dining table | 29.818 | 36.359 | 0.001 |
+----------------+--------+---------+----------+
| toilet | 41.972 | 48.465 | 0.009 |
+----------------+--------+---------+----------+
| tv | 30.380 | 33.181 | 0.002 |
+----------------+--------+---------+----------+
| laptop | 49.657 | 39.972 | 0.002 |
+----------------+--------+---------+----------+
| mouse | 12.719 | 8.821 | 0.012 |
+----------------+--------+---------+----------+
| remote | 21.988 | 11.331 | 0 |
+----------------+--------+---------+----------+
| keyboard | 32.526 | 28.104 | 0.336 |
+----------------+--------+---------+----------+
| cell phone | 27.311 | 9.488 | 0.013 |
+----------------+--------+---------+----------+
| microwave | 28.484 | 13.371 | 0.093 |
+----------------+--------+---------+----------+
| oven | 34.200 | 29.818 | 0.007 |
+----------------+--------+---------+----------+
| toaster | 17.489 | 6.973 | 0 |
+----------------+--------+---------+----------+
| sink | 20.407 | 12.465 | 0.239 |
+----------------+--------+---------+----------+
| refrigerator | 45.943 | 48.411 | 0 |
+----------------+--------+---------+----------+
| book | 24.291 | 12.486 | 0.322 |
+----------------+--------+---------+----------+
| clock | 25.021 | 21.984 | 0 |
+----------------+--------+---------+----------+
| vase | 21.075 | 11.323 | 0 |
+----------------+--------+---------+----------+
| scissors | 20.668 | 16.268 | 0 |
+----------------+--------+---------+----------+
| teddy bear | 62.973 | 55.414 | 0.000 |
+----------------+--------+---------+----------+
| hair drier | 8.350 | 5.129 | 0 |
+----------------+--------+---------+----------+
| toothbrush | 15.816 | 8.947 | 0.005 |
+----------------+--------+---------+----------+
| mIoU | 35.206 | 28.381 | 0.106 |
+----------------+--------+---------+----------+
2022-10-31 17:19:42,517 - dist_train_coco_seg_neg.py - INFO: Iter: 8200; Elasped: 2:50:46; ETA: 1 day, 0:55:14; LR: 5.444e-05; cls_loss: 0.0685, cls_loss_aux: 0.0744, ptc_loss: 0.2045, ctc_loss: 0.1779, seg_loss: 2.4231...
2022-10-31 17:22:56,720 - dist_train_coco_seg_neg.py - INFO: Iter: 8400; Elasped: 2:54:00; ETA: 1 day, 0:43:08; LR: 5.430e-05; cls_loss: 0.0685, cls_loss_aux: 0.0748, ptc_loss: 0.2151, ctc_loss: 0.2072, seg_loss: 1.7428...
2022-10-31 17:26:10,860 - dist_train_coco_seg_neg.py - INFO: Iter: 8600; Elasped: 2:57:14; ETA: 1 day, 0:31:26; LR: 5.416e-05; cls_loss: 0.0703, cls_loss_aux: 0.0764, ptc_loss: 0.2089, ctc_loss: 0.2085, seg_loss: 1.6079...
2022-10-31 17:29:24,726 - dist_train_coco_seg_neg.py - INFO: Iter: 8800; Elasped: 3:00:28; ETA: 1 day, 0:20:08; LR: 5.403e-05; cls_loss: 0.0664, cls_loss_aux: 0.0729, ptc_loss: 0.2266, ctc_loss: 0.2064, seg_loss: 1.5261...
2022-10-31 17:32:39,123 - dist_train_coco_seg_neg.py - INFO: Iter: 9000; Elasped: 3:03:43; ETA: 1 day, 0:09:19; LR: 5.389e-05; cls_loss: 0.0621, cls_loss_aux: 0.0684, ptc_loss: 0.2001, ctc_loss: 0.2498, seg_loss: 1.3596...
2022-10-31 17:35:52,918 - dist_train_coco_seg_neg.py - INFO: Iter: 9200; Elasped: 3:06:56; ETA: 23:58:34; LR: 5.375e-05; cls_loss: 0.0650, cls_loss_aux: 0.0707, ptc_loss: 0.2099, ctc_loss: 0.2802, seg_loss: 1.4743...
2022-10-31 17:39:07,442 - dist_train_coco_seg_neg.py - INFO: Iter: 9400; Elasped: 3:10:11; ETA: 23:48:23; LR: 5.362e-05; cls_loss: 0.0620, cls_loss_aux: 0.0689, ptc_loss: 0.2071, ctc_loss: 0.2566, seg_loss: 1.3397...
2022-10-31 17:42:21,551 - dist_train_coco_seg_neg.py - INFO: Iter: 9600; Elasped: 3:13:25; ETA: 23:38:23; LR: 5.348e-05; cls_loss: 0.0628, cls_loss_aux: 0.0699, ptc_loss: 0.2010, ctc_loss: 0.2261, seg_loss: 1.3206...
2022-10-31 17:45:35,791 - dist_train_coco_seg_neg.py - INFO: Iter: 9800; Elasped: 3:16:39; ETA: 23:28:39; LR: 5.334e-05; cls_loss: 0.0660, cls_loss_aux: 0.0712, ptc_loss: 0.2223, ctc_loss: 0.1950, seg_loss: 1.2709...
2022-10-31 17:48:49,709 - dist_train_coco_seg_neg.py - INFO: Iter: 10000; Elasped: 3:19:53; ETA: 23:19:11; LR: 5.321e-05; cls_loss: 0.0664, cls_loss_aux: 0.0734, ptc_loss: 0.2071, ctc_loss: 0.2334, seg_loss: 1.3026...
2022-10-31 17:52:03,631 - dist_train_coco_seg_neg.py - INFO: Iter: 10200; Elasped: 3:23:07; ETA: 23:09:57; LR: 5.307e-05; cls_loss: 0.0641, cls_loss_aux: 0.0706, ptc_loss: 0.2078, ctc_loss: 0.1708, seg_loss: 1.3375...
2022-10-31 17:55:19,676 - dist_train_coco_seg_neg.py - INFO: Iter: 10400; Elasped: 3:26:23; ETA: 23:01:10; LR: 5.293e-05; cls_loss: 0.0621, cls_loss_aux: 0.0692, ptc_loss: 0.2037, ctc_loss: 0.1830, seg_loss: 1.3239...
2022-10-31 17:58:33,089 - dist_train_coco_seg_neg.py - INFO: Iter: 10600; Elasped: 3:29:37; ETA: 22:52:23; LR: 5.280e-05; cls_loss: 0.0657, cls_loss_aux: 0.0717, ptc_loss: 0.2340, ctc_loss: 0.1829, seg_loss: 1.3971...
2022-10-31 18:01:46,233 - dist_train_coco_seg_neg.py - INFO: Iter: 10800; Elasped: 3:32:50; ETA: 22:43:42; LR: 5.266e-05; cls_loss: 0.0669, cls_loss_aux: 0.0747, ptc_loss: 0.2236, ctc_loss: 0.1980, seg_loss: 1.4179...
2022-10-31 18:04:59,391 - dist_train_coco_seg_neg.py - INFO: Iter: 11000; Elasped: 3:36:03; ETA: 22:35:13; LR: 5.252e-05; cls_loss: 0.0653, cls_loss_aux: 0.0709, ptc_loss: 0.2111, ctc_loss: 0.2101, seg_loss: 1.3984...
2022-10-31 18:08:12,958 - dist_train_coco_seg_neg.py - INFO: Iter: 11200; Elasped: 3:39:16; ETA: 22:26:55; LR: 5.238e-05; cls_loss: 0.0632, cls_loss_aux: 0.0701, ptc_loss: 0.1977, ctc_loss: 0.2108, seg_loss: 1.3335...
2022-10-31 18:11:26,419 - dist_train_coco_seg_neg.py - INFO: Iter: 11400; Elasped: 3:42:30; ETA: 22:18:54; LR: 5.225e-05; cls_loss: 0.0693, cls_loss_aux: 0.0759, ptc_loss: 0.2165, ctc_loss: 0.1700, seg_loss: 1.3483...
2022-10-31 18:14:39,892 - dist_train_coco_seg_neg.py - INFO: Iter: 11600; Elasped: 3:45:43; ETA: 22:10:57; LR: 5.211e-05; cls_loss: 0.0584, cls_loss_aux: 0.0645, ptc_loss: 0.2258, ctc_loss: 0.1890, seg_loss: 1.2541...
2022-10-31 18:17:53,160 - dist_train_coco_seg_neg.py - INFO: Iter: 11800; Elasped: 3:48:57; ETA: 22:03:15; LR: 5.197e-05; cls_loss: 0.0630, cls_loss_aux: 0.0695, ptc_loss: 0.2215, ctc_loss: 0.2220, seg_loss: 1.3149...
2022-10-31 18:21:06,663 - dist_train_coco_seg_neg.py - INFO: Iter: 12000; Elasped: 3:52:10; ETA: 21:55:36; LR: 5.184e-05; cls_loss: 0.0623, cls_loss_aux: 0.0695, ptc_loss: 0.2215, ctc_loss: 0.1906, seg_loss: 1.2633...
2022-10-31 18:21:06,664 - dist_train_coco_seg_neg.py - INFO: Validating...
2022-10-31 18:38:51,700 - dist_train_coco_seg_neg.py - INFO: val cls score: 0.734639
2022-10-31 18:38:51,703 - dist_train_coco_seg_neg.py - INFO:
+----------------+--------+---------+----------+
| Class | CAM | aux_CAM | Seg_Pred |
+================+========+=========+==========+
| _background_ | 71.496 | 57.806 | 71.367 |
+----------------+--------+---------+----------+
| person | 33.862 | 32.610 | 22.215 |
+----------------+--------+---------+----------+
| bicycle | 30.906 | 19.895 | 33.890 |
+----------------+--------+---------+----------+
| car | 31.361 | 17.252 | 22.696 |
+----------------+--------+---------+----------+
| motorcycle | 59.473 | 47.342 | 58.065 |
+----------------+--------+---------+----------+
| airplane | 67.381 | 63.310 | 59.629 |
+----------------+--------+---------+----------+
| bus | 45.735 | 10.073 | 18.354 |
+----------------+--------+---------+----------+
| train | 31.382 | 31.258 | 31.336 |
+----------------+--------+---------+----------+
| truck | 38.233 | 27.849 | 16.942 |
+----------------+--------+---------+----------+
| boat | 22.862 | 16.640 | 19.916 |
+----------------+--------+---------+----------+
| traffic light | 21.428 | 24.011 | 43.436 |
+----------------+--------+---------+----------+
| fire hydrant | 55.422 | 33.995 | 56.473 |
+----------------+--------+---------+----------+
| stop sign | 50.470 | 42.946 | 61.117 |
+----------------+--------+---------+----------+
| parking meter | 60.578 | 55.194 | 43.899 |
+----------------+--------+---------+----------+
| bench | 28.963 | 24.842 | 18.428 |
+----------------+--------+---------+----------+
| bird | 46.387 | 25.459 | 49.857 |
+----------------+--------+---------+----------+
| cat | 70.743 | 53.792 | 59.949 |
+----------------+--------+---------+----------+
| dog | 66.253 | 47.153 | 54.005 |
+----------------+--------+---------+----------+
| horse | 60.237 | 24.088 | 35.548 |
+----------------+--------+---------+----------+
| sheep | 66.335 | 40.543 | 58.946 |
+----------------+--------+---------+----------+
| cow | 64.565 | 39.933 | 42.985 |
+----------------+--------+---------+----------+
| elephant | 44.752 | 46.433 | 36.078 |
+----------------+--------+---------+----------+
| bear | 63.818 | 55.765 | 61.339 |
+----------------+--------+---------+----------+
| zebra | 75.651 | 72.587 | 69.554 |
+----------------+--------+---------+----------+
| giraffe | 66.672 | 62.336 | 59.847 |
+----------------+--------+---------+----------+
| backpack | 8.951 | 16.703 | 7.595 |
+----------------+--------+---------+----------+
| umbrella | 45.054 | 33.334 | 49.577 |
+----------------+--------+---------+----------+
| handbag | 7.335 | 6.461 | 1.750 |
+----------------+--------+---------+----------+
| tie | 12.699 | 10.817 | 19.545 |
+----------------+--------+---------+----------+
| suitcase | 41.804 | 35.796 | 18.206 |
+----------------+--------+---------+----------+
| frisbee | 20.789 | 5.887 | 12.781 |
+----------------+--------+---------+----------+
| skis | 2.724 | 1.923 | 1.645 |
+----------------+--------+---------+----------+
| snowboard | 4.221 | 3.531 | 3.674 |
+----------------+--------+---------+----------+
| sports ball | 4.067 | 1.925 | 2.379 |
+----------------+--------+---------+----------+
| kite | 33.812 | 22.016 | 25.490 |
+----------------+--------+---------+----------+
| baseball bat | 0.939 | 0.832 | 0.213 |
+----------------+--------+---------+----------+
| baseball glove | 1.572 | 1.387 | 0.176 |
+----------------+--------+---------+----------+
| skateboard | 8.246 | 5.379 | 6.142 |
+----------------+--------+---------+----------+
| surfboard | 9.915 | 7.803 | 8.571 |
+----------------+--------+---------+----------+
| tennis racket | 2.832 | 2.810 | 1.684 |
+----------------+--------+---------+----------+
| bottle | 13.930 | 7.695 | 1.963 |
+----------------+--------+---------+----------+
| wine glass | 23.861 | 18.931 | 0 |
+----------------+--------+---------+----------+
| cup | 17.160 | 9.957 | 0.487 |
+----------------+--------+---------+----------+
| fork | 3.617 | 3.457 | 0 |
+----------------+--------+---------+----------+
| knife | 3.762 | 3.770 | 0 |
+----------------+--------+---------+----------+
| spoon | 3.690 | 4.137 | 0 |
+----------------+--------+---------+----------+
| bowl | 31.213 | 25.031 | 12.742 |
+----------------+--------+---------+----------+
| banana | 65.808 | 60.235 | 51.356 |
+----------------+--------+---------+----------+
| apple | 40.789 | 28.293 | 31.844 |
+----------------+--------+---------+----------+
| sandwich | 44.943 | 34.474 | 36.752 |
+----------------+--------+---------+----------+
| orange | 62.017 | 53.102 | 47.910 |
+----------------+--------+---------+----------+
| broccoli | 45.144 | 46.234 | 35.348 |
+----------------+--------+---------+----------+
| carrot | 23.337 | 23.222 | 9.632 |
+----------------+--------+---------+----------+
| hot dog | 58.908 | 39.466 | 45.659 |
+----------------+--------+---------+----------+
| pizza | 67.486 | 43.833 | 56.141 |
+----------------+--------+---------+----------+
| donut | 72.268 | 46.383 | 38.848 |
+----------------+--------+---------+----------+
| cake | 49.426 | 44.556 | 37.382 |
+----------------+--------+---------+----------+
| chair | 16.726 | 17.757 | 8.129 |
+----------------+--------+---------+----------+
| couch | 34.110 | 27.770 | 14.425 |
+----------------+--------+---------+----------+
| potted plant | 27.399 | 15.950 | 0.003 |
+----------------+--------+---------+----------+
| bed | 49.400 | 49.223 | 44.555 |
+----------------+--------+---------+----------+
| dining table | 22.712 | 32.818 | 19.792 |
+----------------+--------+---------+----------+
| toilet | 61.786 | 45.179 | 55.918 |
+----------------+--------+---------+----------+
| tv | 33.817 | 28.258 | 20.798 |
+----------------+--------+---------+----------+
| laptop | 48.860 | 47.952 | 45.576 |
+----------------+--------+---------+----------+
| mouse | 16.780 | 9.012 | 0.740 |
+----------------+--------+---------+----------+
| remote | 19.619 | 6.500 | 15.565 |
+----------------+--------+---------+----------+
| keyboard | 34.506 | 34.338 | 15.446 |
+----------------+--------+---------+----------+
| cell phone | 22.277 | 31.530 | 26.197 |
+----------------+--------+---------+----------+
| microwave | 29.677 | 24.806 | 0.052 |
+----------------+--------+---------+----------+
| oven | 29.674 | 26.864 | 21.493 |
+----------------+--------+---------+----------+
| toaster | 18.515 | 8.115 | 0 |
+----------------+--------+---------+----------+
| sink | 24.555 | 9.632 | 13.048 |
+----------------+--------+---------+----------+
| refrigerator | 50.441 | 41.677 | 45.196 |
+----------------+--------+---------+----------+
| book | 27.721 | 25.378 | 1.298 |
+----------------+--------+---------+----------+
| clock | 29.321 | 18.696 | 27.750 |
+----------------+--------+---------+----------+
| vase | 19.637 | 15.052 | 15.575 |
+----------------+--------+---------+----------+
| scissors | 27.218 | 15.954 | 25.171 |
+----------------+--------+---------+----------+
| teddy bear | 59.537 | 56.299 | 49.096 |
+----------------+--------+---------+----------+
| hair drier | 10.873 | 2.107 | 0 |
+----------------+--------+---------+----------+
| toothbrush | 17.403 | 8.936 | 0 |
+----------------+--------+---------+----------+
| mIoU | 35.060 | 27.436 | 26.385 |
+----------------+--------+---------+----------+
2022-10-31 18:42:05,219 - dist_train_coco_seg_neg.py - INFO: Iter: 12200; Elasped: 4:13:09; ETA: 23:26:51; LR: 5.170e-05; cls_loss: 0.0657, cls_loss_aux: 0.0719, ptc_loss: 0.2287, ctc_loss: 0.2034, seg_loss: 0.8825...
2022-10-31 18:45:18,624 - dist_train_coco_seg_neg.py - INFO: Iter: 12400; Elasped: 4:16:22; ETA: 23:17:36; LR: 5.156e-05; cls_loss: 0.0605, cls_loss_aux: 0.0675, ptc_loss: 0.1988, ctc_loss: 0.2493, seg_loss: 0.8307...
2022-10-31 18:48:31,887 - dist_train_coco_seg_neg.py - INFO: Iter: 12600; Elasped: 4:19:35; ETA: 23:08:33; LR: 5.142e-05; cls_loss: 0.0603, cls_loss_aux: 0.0674, ptc_loss: 0.2085, ctc_loss: 0.2456, seg_loss: 0.7808...
2022-10-31 18:51:45,355 - dist_train_coco_seg_neg.py - INFO: Iter: 12800; Elasped: 4:22:49; ETA: 22:59:47; LR: 5.129e-05; cls_loss: 0.0602, cls_loss_aux: 0.0675, ptc_loss: 0.2077, ctc_loss: 0.2649, seg_loss: 0.7058...
2022-10-31 18:54:58,899 - dist_train_coco_seg_neg.py - INFO: Iter: 13000; Elasped: 4:26:02; ETA: 22:51:05; LR: 5.115e-05; cls_loss: 0.0606, cls_loss_aux: 0.0673, ptc_loss: 0.2127, ctc_loss: 0.2270, seg_loss: 0.7799...
2022-10-31 18:58:12,104 - dist_train_coco_seg_neg.py - INFO: Iter: 13200; Elasped: 4:29:16; ETA: 22:42:39; LR: 5.101e-05; cls_loss: 0.0648, cls_loss_aux: 0.0709, ptc_loss: 0.2117, ctc_loss: 0.2023, seg_loss: 0.8566...
2022-10-31 19:01:25,360 - dist_train_coco_seg_neg.py - INFO: Iter: 13400; Elasped: 4:32:29; ETA: 22:34:16; LR: 5.087e-05; cls_loss: 0.0598, cls_loss_aux: 0.0662, ptc_loss: 0.2058, ctc_loss: 0.2204, seg_loss: 0.7134...
2022-10-31 19:04:38,481 - dist_train_coco_seg_neg.py - INFO: Iter: 13600; Elasped: 4:35:42; ETA: 22:26:03; LR: 5.074e-05; cls_loss: 0.0619, cls_loss_aux: 0.0700, ptc_loss: 0.2042, ctc_loss: 0.2403, seg_loss: 0.7188...
2022-10-31 19:07:51,878 - dist_train_coco_seg_neg.py - INFO: Iter: 13800; Elasped: 4:38:55; ETA: 22:17:59; LR: 5.060e-05; cls_loss: 0.0585, cls_loss_aux: 0.0634, ptc_loss: 0.1809, ctc_loss: 0.2735, seg_loss: 0.7047...
2022-10-31 19:11:05,106 - dist_train_coco_seg_neg.py - INFO: Iter: 14000; Elasped: 4:42:09; ETA: 22:10:08; LR: 5.046e-05; cls_loss: 0.0586, cls_loss_aux: 0.0650, ptc_loss: 0.1822, ctc_loss: 0.2620, seg_loss: 0.7226...
2022-10-31 19:14:18,658 - dist_train_coco_seg_neg.py - INFO: Iter: 14200; Elasped: 4:45:22; ETA: 22:02:19; LR: 5.032e-05; cls_loss: 0.0675, cls_loss_aux: 0.0741, ptc_loss: 0.2150, ctc_loss: 0.2161, seg_loss: 0.7668...
2022-10-31 19:17:31,872 - dist_train_coco_seg_neg.py - INFO: Iter: 14400; Elasped: 4:48:35; ETA: 21:54:39; LR: 5.019e-05; cls_loss: 0.0557, cls_loss_aux: 0.0625, ptc_loss: 0.1922, ctc_loss: 0.2218, seg_loss: 0.6959...
2022-10-31 19:20:45,617 - dist_train_coco_seg_neg.py - INFO: Iter: 14600; Elasped: 4:51:49; ETA: 21:47:10; LR: 5.005e-05; cls_loss: 0.0620, cls_loss_aux: 0.0667, ptc_loss: 0.2073, ctc_loss: 0.2267, seg_loss: 0.7651...
2022-10-31 19:23:59,020 - dist_train_coco_seg_neg.py - INFO: Iter: 14800; Elasped: 4:55:03; ETA: 21:39:48; LR: 4.991e-05; cls_loss: 0.0580, cls_loss_aux: 0.0643, ptc_loss: 0.1944, ctc_loss: 0.2296, seg_loss: 0.5769...
2022-10-31 19:27:12,405 - dist_train_coco_seg_neg.py - INFO: Iter: 15000; Elasped: 4:58:16; ETA: 21:32:29; LR: 4.977e-05; cls_loss: 0.0585, cls_loss_aux: 0.0653, ptc_loss: 0.1984, ctc_loss: 0.1644, seg_loss: 0.7333...
2022-10-31 19:30:25,946 - dist_train_coco_seg_neg.py - INFO: Iter: 15200; Elasped: 5:01:29; ETA: 21:25:16; LR: 4.964e-05; cls_loss: 0.0616, cls_loss_aux: 0.0680, ptc_loss: 0.2360, ctc_loss: 0.1393, seg_loss: 0.7126...
2022-10-31 19:33:39,289 - dist_train_coco_seg_neg.py - INFO: Iter: 15400; Elasped: 5:04:43; ETA: 21:18:13; LR: 4.950e-05; cls_loss: 0.0572, cls_loss_aux: 0.0630, ptc_loss: 0.2180, ctc_loss: 0.2087, seg_loss: 0.7412...
2022-10-31 19:36:53,052 - dist_train_coco_seg_neg.py - INFO: Iter: 15600; Elasped: 5:07:57; ETA: 21:11:16; LR: 4.936e-05; cls_loss: 0.0600, cls_loss_aux: 0.0661, ptc_loss: 0.2033, ctc_loss: 0.2339, seg_loss: 0.6344...
2022-10-31 19:40:06,330 - dist_train_coco_seg_neg.py - INFO: Iter: 15800; Elasped: 5:11:10; ETA: 21:04:21; LR: 4.922e-05; cls_loss: 0.0575, cls_loss_aux: 0.0639, ptc_loss: 0.1868, ctc_loss: 0.2170, seg_loss: 0.6508...
2022-10-31 19:43:19,841 - dist_train_coco_seg_neg.py - INFO: Iter: 16000; Elasped: 5:14:23; ETA: 20:57:32; LR: 4.908e-05; cls_loss: 0.0610, cls_loss_aux: 0.0662, ptc_loss: 0.2272, ctc_loss: 0.2027, seg_loss: 0.6860...
2022-10-31 19:43:19,843 - dist_train_coco_seg_neg.py - INFO: Validating...
2022-10-31 20:01:04,027 - dist_train_coco_seg_neg.py - INFO: val cls score: 0.760206
2022-10-31 20:01:04,031 - dist_train_coco_seg_neg.py - INFO:
+----------------+--------+---------+----------+
| Class | CAM | aux_CAM | Seg_Pred |
+================+========+=========+==========+
| _background_ | 68.438 | 56.480 | 68.611 |
+----------------+--------+---------+----------+
| person | 25.734 | 25.574 | 23.222 |
+----------------+--------+---------+----------+
| bicycle | 34.699 | 22.616 | 28.029 |
+----------------+--------+---------+----------+
| car | 34.223 | 23.700 | 27.689 |
+----------------+--------+---------+----------+
| motorcycle | 55.242 | 44.347 | 55.000 |
+----------------+--------+---------+----------+
| airplane | 61.649 | 60.313 | 62.640 |
+----------------+--------+---------+----------+
| bus | 54.739 | 53.105 | 54.008 |
+----------------+--------+---------+----------+
| train | 27.379 | 25.037 | 26.355 |
+----------------+--------+---------+----------+
| truck | 42.652 | 32.582 | 34.080 |
+----------------+--------+---------+----------+
| boat | 28.073 | 22.377 | 24.396 |
+----------------+--------+---------+----------+
| traffic light | 16.617 | 8.436 | 35.020 |
+----------------+--------+---------+----------+
| fire hydrant | 60.132 | 28.399 | 67.275 |
+----------------+--------+---------+----------+
| stop sign | 50.870 | 21.363 | 68.270 |
+----------------+--------+---------+----------+
| parking meter | 61.992 | 44.184 | 58.086 |
+----------------+--------+---------+----------+
| bench | 28.289 | 19.647 | 20.267 |
+----------------+--------+---------+----------+
| bird | 50.924 | 54.947 | 56.765 |
+----------------+--------+---------+----------+
| cat | 67.895 | 55.841 | 63.240 |
+----------------+--------+---------+----------+
| dog | 71.315 | 63.942 | 57.152 |
+----------------+--------+---------+----------+
| horse | 67.184 | 31.110 | 59.696 |
+----------------+--------+---------+----------+
| sheep | 74.286 | 49.697 | 70.569 |
+----------------+--------+---------+----------+
| cow | 69.991 | 38.952 | 54.788 |
+----------------+--------+---------+----------+
| elephant | 48.696 | 51.112 | 34.328 |
+----------------+--------+---------+----------+
| bear | 80.237 | 49.305 | 75.572 |
+----------------+--------+---------+----------+
| zebra | 76.918 | 72.491 | 76.650 |
+----------------+--------+---------+----------+
| giraffe | 75.020 | 68.011 | 70.774 |
+----------------+--------+---------+----------+
| backpack | 8.360 | 6.159 | 2.472 |
+----------------+--------+---------+----------+
| umbrella | 48.459 | 42.997 | 42.751 |
+----------------+--------+---------+----------+
| handbag | 7.019 | 4.991 | 0.633 |
+----------------+--------+---------+----------+
| tie | 10.326 | 17.347 | 21.593 |
+----------------+--------+---------+----------+
| suitcase | 35.819 | 34.733 | 22.127 |
+----------------+--------+---------+----------+
| frisbee | 31.442 | 7.754 | 28.423 |
+----------------+--------+---------+----------+
| skis | 4.632 | 2.188 | 2.276 |
+----------------+--------+---------+----------+
| snowboard | 9.344 | 6.073 | 11.247 |
+----------------+--------+---------+----------+
| sports ball | 4.839 | 1.704 | 7.067 |
+----------------+--------+---------+----------+
| kite | 38.152 | 29.851 | 31.921 |
+----------------+--------+---------+----------+
| baseball bat | 1.329 | 0.729 | 0.326 |
+----------------+--------+---------+----------+
| baseball glove | 2.411 | 1.111 | 1.152 |
+----------------+--------+---------+----------+
| skateboard | 14.650 | 5.765 | 13.726 |
+----------------+--------+---------+----------+
| surfboard | 19.299 | 4.944 | 30.298 |
+----------------+--------+---------+----------+
| tennis racket | 3.362 | 2.360 | 2.310 |
+----------------+--------+---------+----------+
| bottle | 17.303 | 18.993 | 8.193 |
+----------------+--------+---------+----------+
| wine glass | 19.561 | 11.324 | 4.778 |
+----------------+--------+---------+----------+
| cup | 22.768 | 6.801 | 11.665 |
+----------------+--------+---------+----------+
| fork | 3.616 | 3.196 | 0 |
+----------------+--------+---------+----------+
| knife | 3.941 | 3.306 | 0.976 |
+----------------+--------+---------+----------+
| spoon | 3.670 | 2.129 | 0.020 |
+----------------+--------+---------+----------+
| bowl | 32.867 | 24.136 | 19.293 |
+----------------+--------+---------+----------+
| banana | 64.403 | 49.281 | 60.532 |
+----------------+--------+---------+----------+
| apple | 45.708 | 31.038 | 41.300 |
+----------------+--------+---------+----------+
| sandwich | 50.592 | 29.773 | 35.750 |
+----------------+--------+---------+----------+
| orange | 66.523 | 53.620 | 65.124 |
+----------------+--------+---------+----------+
| broccoli | 49.078 | 51.583 | 47.997 |
+----------------+--------+---------+----------+
| carrot | 35.910 | 41.468 | 24.803 |
+----------------+--------+---------+----------+
| hot dog | 63.419 | 43.215 | 56.405 |
+----------------+--------+---------+----------+
| pizza | 72.303 | 51.575 | 60.661 |
+----------------+--------+---------+----------+
| donut | 74.371 | 41.940 | 56.057 |
+----------------+--------+---------+----------+
| cake | 51.681 | 37.120 | 36.340 |
+----------------+--------+---------+----------+
| chair | 17.758 | 19.854 | 10.625 |
+----------------+--------+---------+----------+
| couch | 41.604 | 39.193 | 29.506 |
+----------------+--------+---------+----------+
| potted plant | 34.841 | 26.486 | 5.896 |
+----------------+--------+---------+----------+
| bed | 45.109 | 45.678 | 39.546 |
+----------------+--------+---------+----------+
| dining table | 26.810 | 40.722 | 17.879 |
+----------------+--------+---------+----------+
| toilet | 64.036 | 46.574 | 57.057 |
+----------------+--------+---------+----------+
| tv | 37.826 | 27.062 | 30.916 |
+----------------+--------+---------+----------+
| laptop | 41.558 | 36.987 | 34.976 |
+----------------+--------+---------+----------+
| mouse | 22.550 | 9.997 | 4.276 |
+----------------+--------+---------+----------+
| remote | 28.954 | 10.803 | 44.891 |
+----------------+--------+---------+----------+
| keyboard | 35.155 | 25.674 | 25.519 |
+----------------+--------+---------+----------+
| cell phone | 20.651 | 12.192 | 42.387 |
+----------------+--------+---------+----------+
| microwave | 24.218 | 22.914 | 8.754 |
+----------------+--------+---------+----------+
| oven | 28.308 | 27.208 | 14.828 |
+----------------+--------+---------+----------+
| toaster | 8.767 | 13.448 | 0 |
+----------------+--------+---------+----------+
| sink | 34.332 | 7.117 | 23.914 |
+----------------+--------+---------+----------+
| refrigerator | 55.775 | 48.309 | 47.997 |
+----------------+--------+---------+----------+
| book | 27.942 | 27.023 | 15.575 |
+----------------+--------+---------+----------+
| clock | 23.017 | 17.769 | 19.794 |
+----------------+--------+---------+----------+
| vase | 19.234 | 15.686 | 15.339 |
+----------------+--------+---------+----------+
| scissors | 30.386 | 14.958 | 33.837 |
+----------------+--------+---------+----------+
| teddy bear | 57.079 | 53.864 | 51.210 |
+----------------+--------+---------+----------+
| hair drier | 7.407 | 2.496 | 0 |
+----------------+--------+---------+----------+
| toothbrush | 18.868 | 13.463 | 3.342 |
+----------------+--------+---------+----------+
| mIoU | 37.068 | 28.373 | 32.083 |
+----------------+--------+---------+----------+
2022-10-31 20:04:18,565 - dist_train_coco_seg_neg.py - INFO: Iter: 16200; Elasped: 5:35:22; ETA: 22:00:45; LR: 4.895e-05; cls_loss: 0.0580, cls_loss_aux: 0.0635, ptc_loss: 0.2108, ctc_loss: 0.2371, seg_loss: 0.6823...
2022-10-31 20:07:31,995 - dist_train_coco_seg_neg.py - INFO: Iter: 16400; Elasped: 5:38:35; ETA: 21:53:02; LR: 4.881e-05; cls_loss: 0.0592, cls_loss_aux: 0.0646, ptc_loss: 0.2040, ctc_loss: 0.2197, seg_loss: 0.6394...
2022-10-31 20:10:44,978 - dist_train_coco_seg_neg.py - INFO: Iter: 16600; Elasped: 5:41:48; ETA: 21:45:25; LR: 4.867e-05; cls_loss: 0.0569, cls_loss_aux: 0.0630, ptc_loss: 0.2036, ctc_loss: 0.2213, seg_loss: 0.6857...
2022-10-31 20:13:58,586 - dist_train_coco_seg_neg.py - INFO: Iter: 16800; Elasped: 5:45:02; ETA: 21:37:58; LR: 4.853e-05; cls_loss: 0.0565, cls_loss_aux: 0.0625, ptc_loss: 0.2129, ctc_loss: 0.1976, seg_loss: 0.6552...
2022-10-31 20:17:12,064 - dist_train_coco_seg_neg.py - INFO: Iter: 17000; Elasped: 5:48:16; ETA: 21:30:38; LR: 4.839e-05; cls_loss: 0.0591, cls_loss_aux: 0.0659, ptc_loss: 0.2201, ctc_loss: 0.2242, seg_loss: 0.6954...
2022-10-31 20:20:25,324 - dist_train_coco_seg_neg.py - INFO: Iter: 17200; Elasped: 5:51:29; ETA: 21:23:19; LR: 4.825e-05; cls_loss: 0.0570, cls_loss_aux: 0.0638, ptc_loss: 0.2030, ctc_loss: 0.2010, seg_loss: 0.6951...
2022-10-31 20:23:38,697 - dist_train_coco_seg_neg.py - INFO: Iter: 17400; Elasped: 5:54:42; ETA: 21:16:06; LR: 4.812e-05; cls_loss: 0.0609, cls_loss_aux: 0.0661, ptc_loss: 0.2296, ctc_loss: 0.1845, seg_loss: 0.7115...
2022-10-31 20:26:51,904 - dist_train_coco_seg_neg.py - INFO: Iter: 17600; Elasped: 5:57:55; ETA: 21:08:58; LR: 4.798e-05; cls_loss: 0.0558, cls_loss_aux: 0.0598, ptc_loss: 0.2238, ctc_loss: 0.2132, seg_loss: 0.6807...
2022-10-31 20:30:05,078 - dist_train_coco_seg_neg.py - INFO: Iter: 17800; Elasped: 6:01:09; ETA: 21:01:59; LR: 4.784e-05; cls_loss: 0.0554, cls_loss_aux: 0.0640, ptc_loss: 0.2284, ctc_loss: 0.2250, seg_loss: 0.7219...
2022-10-31 20:33:18,581 - dist_train_coco_seg_neg.py - INFO: Iter: 18000; Elasped: 6:04:22; ETA: 20:55:02; LR: 4.770e-05; cls_loss: 0.0542, cls_loss_aux: 0.0595, ptc_loss: 0.2055, ctc_loss: 0.2327, seg_loss: 0.6212...
2022-10-31 20:36:31,915 - dist_train_coco_seg_neg.py - INFO: Iter: 18200; Elasped: 6:07:35; ETA: 20:48:10; LR: 4.756e-05; cls_loss: 0.0576, cls_loss_aux: 0.0638, ptc_loss: 0.2165, ctc_loss: 0.1565, seg_loss: 0.5685...
2022-10-31 20:39:45,110 - dist_train_coco_seg_neg.py - INFO: Iter: 18400; Elasped: 6:10:49; ETA: 20:41:25; LR: 4.742e-05; cls_loss: 0.0569, cls_loss_aux: 0.0637, ptc_loss: 0.2350, ctc_loss: 0.1646, seg_loss: 0.6390...
2022-10-31 20:42:58,521 - dist_train_coco_seg_neg.py - INFO: Iter: 18600; Elasped: 6:14:02; ETA: 20:34:42; LR: 4.729e-05; cls_loss: 0.0570, cls_loss_aux: 0.0623, ptc_loss: 0.2206, ctc_loss: 0.2096, seg_loss: 0.6327...
2022-10-31 20:46:11,736 - dist_train_coco_seg_neg.py - INFO: Iter: 18800; Elasped: 6:17:15; ETA: 20:28:04; LR: 4.715e-05; cls_loss: 0.0642, cls_loss_aux: 0.0705, ptc_loss: 0.1972, ctc_loss: 0.2066, seg_loss: 0.7083...
2022-10-31 20:49:25,343 - dist_train_coco_seg_neg.py - INFO: Iter: 19000; Elasped: 6:20:29; ETA: 20:21:33; LR: 4.701e-05; cls_loss: 0.0607, cls_loss_aux: 0.0672, ptc_loss: 0.2002, ctc_loss: 0.2198, seg_loss: 0.6612...
2022-10-31 20:52:38,619 - dist_train_coco_seg_neg.py - INFO: Iter: 19200; Elasped: 6:23:42; ETA: 20:15:03; LR: 4.687e-05; cls_loss: 0.0551, cls_loss_aux: 0.0613, ptc_loss: 0.2024, ctc_loss: 0.2130, seg_loss: 0.6958...
2022-10-31 20:55:52,210 - dist_train_coco_seg_neg.py - INFO: Iter: 19400; Elasped: 6:26:56; ETA: 20:08:40; LR: 4.673e-05; cls_loss: 0.0589, cls_loss_aux: 0.0640, ptc_loss: 0.2074, ctc_loss: 0.2522, seg_loss: 0.6572...
2022-10-31 20:59:05,325 - dist_train_coco_seg_neg.py - INFO: Iter: 19600; Elasped: 6:30:09; ETA: 20:02:17; LR: 4.659e-05; cls_loss: 0.0579, cls_loss_aux: 0.0638, ptc_loss: 0.2050, ctc_loss: 0.1577, seg_loss: 0.6448...
2022-10-31 21:02:18,346 - dist_train_coco_seg_neg.py - INFO: Iter: 19800; Elasped: 6:33:22; ETA: 19:55:59; LR: 4.645e-05; cls_loss: 0.0594, cls_loss_aux: 0.0664, ptc_loss: 0.2029, ctc_loss: 0.2655, seg_loss: 0.6914...
2022-10-31 21:05:31,969 - dist_train_coco_seg_neg.py - INFO: Iter: 20000; Elasped: 6:36:35; ETA: 19:49:45; LR: 4.631e-05; cls_loss: 0.0613, cls_loss_aux: 0.0676, ptc_loss: 0.2006, ctc_loss: 0.2307, seg_loss: 0.7094...
2022-10-31 21:05:31,974 - dist_train_coco_seg_neg.py - INFO: Validating...
2022-10-31 21:23:16,542 - dist_train_coco_seg_neg.py - INFO: val cls score: 0.753334
2022-10-31 21:23:16,545 - dist_train_coco_seg_neg.py - INFO:
+----------------+--------+---------+----------+
| Class | CAM | aux_CAM | Seg_Pred |
+================+========+=========+==========+
| _background_ | 64.220 | 58.373 | 64.470 |
+----------------+--------+---------+----------+
| person | 10.828 | 36.167 | 11.213 |
+----------------+--------+---------+----------+
| bicycle | 34.543 | 17.604 | 12.807 |
+----------------+--------+---------+----------+
| car | 32.592 | 27.769 | 30.575 |
+----------------+--------+---------+----------+
| motorcycle | 56.519 | 55.352 | 53.196 |
+----------------+--------+---------+----------+
| airplane | 62.515 | 51.158 | 59.006 |
+----------------+--------+---------+----------+
| bus | 56.606 | 49.027 | 56.108 |
+----------------+--------+---------+----------+
| train | 36.049 | 30.418 | 33.910 |
+----------------+--------+---------+----------+
| truck | 37.788 | 28.368 | 31.058 |
+----------------+--------+---------+----------+
| boat | 35.030 | 25.522 | 31.428 |
+----------------+--------+---------+----------+
| traffic light | 21.794 | 9.432 | 37.147 |
+----------------+--------+---------+----------+
| fire hydrant | 58.535 | 30.871 | 61.858 |
+----------------+--------+---------+----------+
| stop sign | 50.787 | 25.891 | 63.640 |
+----------------+--------+---------+----------+
| parking meter | 53.358 | 37.819 | 53.713 |
+----------------+--------+---------+----------+
| bench | 33.596 | 24.908 | 32.184 |
+----------------+--------+---------+----------+
| bird | 45.912 | 48.565 | 56.293 |
+----------------+--------+---------+----------+
| cat | 50.331 | 41.488 | 43.859 |
+----------------+--------+---------+----------+
| dog | 63.321 | 64.367 | 53.950 |
+----------------+--------+---------+----------+
| horse | 65.595 | 39.805 | 62.349 |
+----------------+--------+---------+----------+
| sheep | 71.519 | 54.064 | 68.729 |
+----------------+--------+---------+----------+
| cow | 67.955 | 41.937 | 54.085 |
+----------------+--------+---------+----------+
| elephant | 57.890 | 52.457 | 59.052 |
+----------------+--------+---------+----------+
| bear | 76.978 | 56.601 | 74.641 |
+----------------+--------+---------+----------+
| zebra | 75.305 | 67.349 | 72.535 |
+----------------+--------+---------+----------+
| giraffe | 70.000 | 67.220 | 64.777 |
+----------------+--------+---------+----------+
| backpack | 10.534 | 9.258 | 3.114 |
+----------------+--------+---------+----------+
| umbrella | 45.746 | 44.937 | 49.510 |
+----------------+--------+---------+----------+
| handbag | 7.685 | 5.590 | 0.395 |
+----------------+--------+---------+----------+
| tie | 8.847 | 20.405 | 27.947 |
+----------------+--------+---------+----------+
| suitcase | 44.146 | 48.350 | 37.562 |
+----------------+--------+---------+----------+
| frisbee | 28.477 | 8.693 | 30.839 |
+----------------+--------+---------+----------+
| skis | 3.897 | 2.430 | 2.505 |
+----------------+--------+---------+----------+
| snowboard | 9.966 | 8.799 | 8.037 |
+----------------+--------+---------+----------+
| sports ball | 4.242 | 2.732 | 2.511 |
+----------------+--------+---------+----------+
| kite | 42.846 | 27.271 | 31.185 |
+----------------+--------+---------+----------+
| baseball bat | 1.680 | 1.027 | 1.352 |
+----------------+--------+---------+----------+
| baseball glove | 2.865 | 1.622 | 0.942 |
+----------------+--------+---------+----------+
| skateboard | 14.534 | 8.166 | 9.756 |
+----------------+--------+---------+----------+
| surfboard | 14.031 | 7.140 | 14.681 |
+----------------+--------+---------+----------+
| tennis racket | 5.071 | 3.447 | 2.474 |
+----------------+--------+---------+----------+
| bottle | 16.803 | 10.445 | 10.739 |
+----------------+--------+---------+----------+
| wine glass | 12.421 | 4.584 | 0.274 |
+----------------+--------+---------+----------+
| cup | 20.874 | 6.345 | 16.327 |
+----------------+--------+---------+----------+
| fork | 3.450 | 2.770 | 4.832 |
+----------------+--------+---------+----------+
| knife | 4.180 | 11.904 | 1.644 |
+----------------+--------+---------+----------+
| spoon | 3.452 | 3.298 | 1.204 |
+----------------+--------+---------+----------+
| bowl | 25.428 | 23.744 | 9.991 |
+----------------+--------+---------+----------+
| banana | 66.948 | 53.625 | 61.715 |
+----------------+--------+---------+----------+
| apple | 50.145 | 40.443 | 37.974 |
+----------------+--------+---------+----------+
| sandwich | 49.199 | 33.945 | 34.367 |
+----------------+--------+---------+----------+
| orange | 64.068 | 63.399 | 62.435 |
+----------------+--------+---------+----------+
| broccoli | 53.213 | 49.221 | 47.355 |
+----------------+--------+---------+----------+
| carrot | 32.984 | 52.191 | 30.286 |
+----------------+--------+---------+----------+
| hot dog | 58.708 | 39.489 | 59.737 |
+----------------+--------+---------+----------+
| pizza | 72.228 | 54.045 | 62.521 |
+----------------+--------+---------+----------+
| donut | 72.158 | 43.231 | 52.148 |
+----------------+--------+---------+----------+
| cake | 48.362 | 43.292 | 33.438 |
+----------------+--------+---------+----------+
| chair | 22.175 | 23.945 | 14.110 |
+----------------+--------+---------+----------+
| couch | 39.312 | 34.683 | 25.999 |
+----------------+--------+---------+----------+
| potted plant | 32.621 | 26.972 | 7.602 |
+----------------+--------+---------+----------+
| bed | 49.386 | 45.656 | 47.879 |
+----------------+--------+---------+----------+
| dining table | 26.670 | 28.864 | 19.529 |
+----------------+--------+---------+----------+
| toilet | 62.876 | 31.894 | 55.484 |
+----------------+--------+---------+----------+
| tv | 39.390 | 27.965 | 32.140 |
+----------------+--------+---------+----------+
| laptop | 39.931 | 38.936 | 33.275 |
+----------------+--------+---------+----------+
| mouse | 20.854 | 11.240 | 9.235 |
+----------------+--------+---------+----------+
| remote | 27.393 | 18.613 | 34.378 |
+----------------+--------+---------+----------+
| keyboard | 32.900 | 26.076 | 13.704 |
+----------------+--------+---------+----------+
| cell phone | 20.452 | 25.158 | 22.015 |
+----------------+--------+---------+----------+
| microwave | 15.516 | 14.974 | 7.147 |
+----------------+--------+---------+----------+
| oven | 35.080 | 29.194 | 18.295 |
+----------------+--------+---------+----------+
| toaster | 21.416 | 7.729 | 0 |
+----------------+--------+---------+----------+
| sink | 33.816 | 16.970 | 24.581 |
+----------------+--------+---------+----------+
| refrigerator | 53.744 | 48.449 | 46.475 |
+----------------+--------+---------+----------+
| book | 29.551 | 29.500 | 13.837 |
+----------------+--------+---------+----------+
| clock | 31.286 | 41.105 | 31.219 |
+----------------+--------+---------+----------+
| vase | 20.509 | 14.482 | 16.325 |
+----------------+--------+---------+----------+
| scissors | 21.935 | 27.642 | 30.838 |
+----------------+--------+---------+----------+
| teddy bear | 60.906 | 49.397 | 59.264 |
+----------------+--------+---------+----------+
| hair drier | 8.380 | 5.671 | 0 |
+----------------+--------+---------+----------+
| toothbrush | 20.219 | 10.370 | 16.366 |
+----------------+--------+---------+----------+
| mIoU | 36.482 | 29.801 | 31.754 |
+----------------+--------+---------+----------+
2022-10-31 21:26:30,793 - dist_train_coco_seg_neg.py - INFO: Iter: 20200; Elasped: 6:57:34; ETA: 20:36:09; LR: 4.618e-05; cls_loss: 0.0625, cls_loss_aux: 0.0688, ptc_loss: 0.2127, ctc_loss: 0.2143, seg_loss: 0.6934...
2022-10-31 21:29:44,582 - dist_train_coco_seg_neg.py - INFO: Iter: 20400; Elasped: 7:00:48; ETA: 20:29:23; LR: 4.604e-05; cls_loss: 0.0629, cls_loss_aux: 0.0698, ptc_loss: 0.1988, ctc_loss: 0.2053, seg_loss: 0.6814...
2022-10-31 21:33:01,748 - dist_train_coco_seg_neg.py - INFO: Iter: 20600; Elasped: 7:04:05; ETA: 20:22:50; LR: 4.590e-05; cls_loss: 0.0587, cls_loss_aux: 0.0653, ptc_loss: 0.2076, ctc_loss: 0.2155, seg_loss: 0.6694...
2022-10-31 21:36:15,065 - dist_train_coco_seg_neg.py - INFO: Iter: 20800; Elasped: 7:07:19; ETA: 20:16:12; LR: 4.576e-05; cls_loss: 0.0548, cls_loss_aux: 0.0597, ptc_loss: 0.2071, ctc_loss: 0.1953, seg_loss: 0.6353...
2022-10-31 21:39:28,510 - dist_train_coco_seg_neg.py - INFO: Iter: 21000; Elasped: 7:10:32; ETA: 20:09:35; LR: 4.562e-05; cls_loss: 0.0544, cls_loss_aux: 0.0609, ptc_loss: 0.2108, ctc_loss: 0.1615, seg_loss: 0.5768...
2022-10-31 21:42:41,705 - dist_train_coco_seg_neg.py - INFO: Iter: 21200; Elasped: 7:13:45; ETA: 20:03:02; LR: 4.548e-05; cls_loss: 0.0536, cls_loss_aux: 0.0585, ptc_loss: 0.2310, ctc_loss: 0.1892, seg_loss: 0.5719...
2022-10-31 21:45:55,315 - dist_train_coco_seg_neg.py - INFO: Iter: 21400; Elasped: 7:16:59; ETA: 19:56:35; LR: 4.534e-05; cls_loss: 0.0572, cls_loss_aux: 0.0632, ptc_loss: 0.2163, ctc_loss: 0.2071, seg_loss: 0.6016...
2022-10-31 21:49:08,742 - dist_train_coco_seg_neg.py - INFO: Iter: 21600; Elasped: 7:20:12; ETA: 19:50:10; LR: 4.520e-05; cls_loss: 0.0573, cls_loss_aux: 0.0624, ptc_loss: 0.1977, ctc_loss: 0.1984, seg_loss: 0.6066...
2022-10-31 21:52:22,566 - dist_train_coco_seg_neg.py - INFO: Iter: 21800; Elasped: 7:23:26; ETA: 19:43:50; LR: 4.506e-05; cls_loss: 0.0565, cls_loss_aux: 0.0612, ptc_loss: 0.2006, ctc_loss: 0.2112, seg_loss: 0.6079...
2022-10-31 21:55:36,115 - dist_train_coco_seg_neg.py - INFO: Iter: 22000; Elasped: 7:26:40; ETA: 19:37:34; LR: 4.492e-05; cls_loss: 0.0610, cls_loss_aux: 0.0686, ptc_loss: 0.1920, ctc_loss: 0.2426, seg_loss: 0.6510...
2022-10-31 21:58:49,652 - dist_train_coco_seg_neg.py - INFO: Iter: 22200; Elasped: 7:29:53; ETA: 19:31:19; LR: 4.478e-05; cls_loss: 0.0561, cls_loss_aux: 0.0622, ptc_loss: 0.2028, ctc_loss: 0.1921, seg_loss: 0.5973...
2022-10-31 22:02:03,169 - dist_train_coco_seg_neg.py - INFO: Iter: 22400; Elasped: 7:33:07; ETA: 19:25:09; LR: 4.464e-05; cls_loss: 0.0593, cls_loss_aux: 0.0653, ptc_loss: 0.2072, ctc_loss: 0.2169, seg_loss: 0.6148...