-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathtrain.py
245 lines (206 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import time
import os
from six.moves import cPickle
import opts
import models
from dataloader import *
import eval_utils
import misc.utils as utils
from misc.rewards import init_scorer, get_self_critical_reward
try:
import tensorboardX as tb
except ImportError:
print("tensorboardX is not installed")
tb = None
def add_summary_value(writer, key, value, iteration):
if writer:
writer.add_scalar(key, value, iteration)
def train(opt):
# Deal with feature things before anything
opt.use_att = utils.if_use_att(opt.caption_model)
if opt.use_box: opt.att_feat_size = opt.att_feat_size + 5
loader = DataLoader(opt)
opt.vocab_size = loader.vocab_size
opt.seq_length = loader.seq_length
tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path)
infos = {}
histories = {}
if opt.start_from is not None:
# open old infos and check if models are compatible
with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl')) as f:
infos = cPickle.load(f)
saved_model_opt = infos['opt']
need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme
if os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')):
with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')) as f:
histories = cPickle.load(f)
iteration = infos.get('iter', 0)
epoch = infos.get('epoch', 0)
val_result_history = histories.get('val_result_history', {})
loss_history = histories.get('loss_history', {})
lr_history = histories.get('lr_history', {})
ss_prob_history = histories.get('ss_prob_history', {})
loader.iterators = infos.get('iterators', loader.iterators)
loader.split_ix = infos.get('split_ix', loader.split_ix)
if opt.load_best_score == 1:
best_val_score = infos.get('best_val_score', None)
model = models.setup(opt).cuda()
dp_model = torch.nn.DataParallel(model)
epoch_done = True
# Assure in training mode
dp_model.train()
if opt.label_smoothing > 0:
crit = utils.LabelSmoothing(smoothing=opt.label_smoothing)
else:
crit = utils.LanguageModelCriterion()
rl_crit = utils.RewardCriterion()
if opt.noamopt:
assert opt.caption_model == 'transformer', 'noamopt can only work with transformer'
optimizer = utils.get_std_opt(model, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup)
optimizer._step = iteration
elif opt.reduce_on_plateau:
optimizer = utils.build_optimizer(model.parameters(), opt)
optimizer = utils.ReduceLROnPlateau(optimizer, factor=0.5, patience=3)
else:
optimizer = utils.build_optimizer(model.parameters(), opt)
# Load the optimizer
if vars(opt).get('start_from', None) is not None and os.path.isfile(os.path.join(opt.start_from,"optimizer.pth")):
optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth')))
while True:
if epoch_done:
if not opt.noamopt and not opt.reduce_on_plateau:
# Assign the learning rate
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
else:
opt.current_lr = opt.learning_rate
utils.set_lr(optimizer, opt.current_lr) # set the decayed rate
# Assign the scheduled sampling prob
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
model.ss_prob = opt.ss_prob
# If start self critical training
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
sc_flag = True
init_scorer(opt.cached_tokens)
else:
sc_flag = False
epoch_done = False
start = time.time()
# Load data from train split (0)
data = loader.get_batch('train')
print('Read data:', time.time() - start)
torch.cuda.synchronize()
start = time.time()
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_ if _ is None else torch.from_numpy(_).cuda() for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
optimizer.zero_grad()
if not sc_flag:
loss = crit(dp_model(fc_feats, att_feats, labels, att_masks), labels[:,1:], masks[:,1:])
else:
gen_result, sample_logprobs = dp_model(fc_feats, att_feats, att_masks, opt={'sample_max':0}, mode='sample')
reward = get_self_critical_reward(dp_model, fc_feats, att_feats, att_masks, data, gen_result, opt)
loss = rl_crit(sample_logprobs, gen_result.data, torch.from_numpy(reward).float().cuda())
loss.backward()
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
train_loss = loss.item()
torch.cuda.synchronize()
end = time.time()
if not sc_flag:
print("iter {} (epoch {}), train_loss = {:.3f}, time/batch = {:.3f}" \
.format(iteration, epoch, train_loss, end - start))
else:
print("iter {} (epoch {}), avg_reward = {:.3f}, time/batch = {:.3f}" \
.format(iteration, epoch, np.mean(reward[:,0]), end - start))
# Update the iteration and epoch
iteration += 1
if data['bounds']['wrapped']:
epoch += 1
epoch_done = True
# Write the training loss summary
if (iteration % opt.losses_log_every == 0):
add_summary_value(tb_summary_writer, 'train_loss', train_loss, iteration)
if opt.noamopt:
opt.current_lr = optimizer.rate()
elif opt.reduce_on_plateau:
opt.current_lr = optimizer.current_lr
add_summary_value(tb_summary_writer, 'learning_rate', opt.current_lr, iteration)
add_summary_value(tb_summary_writer, 'scheduled_sampling_prob', model.ss_prob, iteration)
if sc_flag:
add_summary_value(tb_summary_writer, 'avg_reward', np.mean(reward[:,0]), iteration)
loss_history[iteration] = train_loss if not sc_flag else np.mean(reward[:,0])
lr_history[iteration] = opt.current_lr
ss_prob_history[iteration] = model.ss_prob
# make evaluation on validation set, and save model
if (iteration % opt.save_checkpoint_every == 0):
# eval model
eval_kwargs = {'split': 'val',
'dataset': opt.input_json}
eval_kwargs.update(vars(opt))
val_loss, predictions, lang_stats = eval_utils.eval_split(dp_model, crit, loader, eval_kwargs)
if opt.reduce_on_plateau:
if 'CIDEr' in lang_stats:
optimizer.scheduler_step(-lang_stats['CIDEr'])
else:
optimizer.scheduler_step(val_loss)
# Write validation result into summary
add_summary_value(tb_summary_writer, 'validation loss', val_loss, iteration)
for k,v in lang_stats.items():
add_summary_value(tb_summary_writer, k, v, iteration)
val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions}
# Save model if is improving on validation result
if opt.language_eval == 1:
current_score = lang_stats['CIDEr']
else:
current_score = - val_loss
best_flag = False
if True: # if true
if best_val_score is None or current_score > best_val_score:
best_val_score = current_score
best_flag = True
checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth')
torch.save(optimizer.state_dict(), optimizer_path)
# Dump miscalleous informations
infos['iter'] = iteration
infos['epoch'] = epoch
infos['iterators'] = loader.iterators
infos['split_ix'] = loader.split_ix
infos['best_val_score'] = best_val_score
infos['opt'] = opt
infos['vocab'] = loader.get_vocab()
histories['val_result_history'] = val_result_history
histories['loss_history'] = loss_history
histories['lr_history'] = lr_history
histories['ss_prob_history'] = ss_prob_history
with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'.pkl'), 'wb') as f:
cPickle.dump(histories, f)
if best_flag:
checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'-best.pkl'), 'wb') as f:
cPickle.dump(infos, f)
# Stop if reaching max epochs
if epoch >= opt.max_epochs and opt.max_epochs != -1:
break
opt = opts.parse_opt()
train(opt)