-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathanswer_16.py
69 lines (49 loc) · 1.43 KB
/
answer_16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
# Gray scale
def BGR2GRAY(img):
b = img[:, :, 0].copy()
g = img[:, :, 1].copy()
r = img[:, :, 2].copy()
# Gray scale
out = 0.2126 * r + 0.7152 * g + 0.0722 * b
out = out.astype(np.uint8)
return out
# prewitt filter
def prewitt_filter(img, K_size=3):
H, W, C = img.shape
# Zero padding
pad = K_size // 2
out = np.zeros((H + pad * 2, W + pad * 2), dtype=np.float)
out[pad: pad + H, pad: pad + W] = gray.copy().astype(np.float)
tmp = out.copy()
out_v = out.copy()
out_h = out.copy()
## prewitt vertical kernel
Kv = [[-1., -1., -1.],[0., 0., 0.], [1., 1., 1.]]
## prewitt horizontal kernel
Kh = [[-1., 0., 1.],[-1., 0., 1.],[-1., 0., 1.]]
# filtering
for y in range(H):
for x in range(W):
out_v[pad + y, pad + x] = np.sum(Kv * (tmp[y: y + K_size, x: x + K_size]))
out_h[pad + y, pad + x] = np.sum(Kh * (tmp[y: y + K_size, x: x + K_size]))
out_v = np.clip(out_v, 0, 255)
out_h = np.clip(out_h, 0, 255)
out_v = out_v[pad: pad + H, pad: pad + W].astype(np.uint8)
out_h = out_h[pad: pad + H, pad: pad + W].astype(np.uint8)
return out_v, out_h
# Read image
img = cv2.imread("imori.jpg").astype(np.float)
# grayscale
gray = BGR2GRAY(img)
# prewitt filtering
out_v, out_h = prewitt_filter(gray, K_size=3)
# Save result
cv2.imwrite("out_v.jpg", out_v)
cv2.imshow("result", out_v)
cv2.waitKey(0)
cv2.imwrite("out_h.jpg", out_h)
cv2.imshow("result", out_h)
cv2.waitKey(0)
cv2.destroyAllWindows()