-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathanswer_68.py
124 lines (90 loc) · 3.15 KB
/
answer_68.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import numpy as np
import matplotlib.pyplot as plt
# get HOG
def HOG(img):
# Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
return gray
# Magnitude and gradient
def get_gradXY(gray):
H, W = gray.shape
# padding before grad
gray = np.pad(gray, (1, 1), 'edge')
# get grad x
gx = gray[1:H+1, 2:] - gray[1:H+1, :W]
# get grad y
gy = gray[2:, 1:W+1] - gray[:H, 1:W+1]
# replace 0 with
gx[gx == 0] = 1e-6
return gx, gy
# get magnitude and gradient
def get_MagGrad(gx, gy):
# get gradient maginitude
magnitude = np.sqrt(gx ** 2 + gy ** 2)
# get gradient angle
gradient = np.arctan(gy / gx)
gradient[gradient < 0] = np.pi / 2 + gradient[gradient < 0] + np.pi / 2
return magnitude, gradient
# Gradient histogram
def quantization(gradient):
# prepare quantization table
gradient_quantized = np.zeros_like(gradient, dtype=np.int)
# quantization base
d = np.pi / 9
# quantization
for i in range(9):
gradient_quantized[np.where((gradient >= d * i) & (gradient <= d * (i + 1)))] = i
return gradient_quantized
# get gradient histogram
def gradient_histogram(gradient_quantized, magnitude, N=8):
# get shape
H, W = magnitude.shape
# get cell num
cell_N_H = H // N
cell_N_W = W // N
histogram = np.zeros((cell_N_H, cell_N_W, 9), dtype=np.float32)
# each pixel
for y in range(cell_N_H):
for x in range(cell_N_W):
for j in range(N):
for i in range(N):
histogram[y, x, gradient_quantized[y * 4 + j, x * 4 + i]] += magnitude[y * 4 + j, x * 4 + i]
return histogram
# histogram normalization
def normalization(histogram, C=3, epsilon=1):
cell_N_H, cell_N_W, _ = histogram.shape
## each histogram
for y in range(cell_N_H):
for x in range(cell_N_W):
#for i in range(9):
histogram[y, x] /= np.sqrt(np.sum(histogram[max(y - 1, 0) : min(y + 2, cell_N_H),
max(x - 1, 0) : min(x + 2, cell_N_W)] ** 2) + epsilon)
return histogram
# 1. BGR -> Gray
gray = BGR2GRAY(img)
# 1. Gray -> Gradient x and y
gx, gy = get_gradXY(gray)
# 2. get gradient magnitude and angle
magnitude, gradient = get_MagGrad(gx, gy)
# 3. Quantization
gradient_quantized = quantization(gradient)
# 4. Gradient histogram
histogram = gradient_histogram(gradient_quantized, magnitude)
# 5. Histogram normalization
histogram = normalization(histogram)
return histogram
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# get HOG
histogram = HOG(img)
# Write result to file
for i in range(9):
plt.subplot(3,3,i+1)
plt.imshow(histogram[..., i])
plt.axis('off')
plt.xticks(color="None")
plt.yticks(color="None")
plt.savefig("out.png")
plt.show()