-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtable_generation.py
125 lines (105 loc) · 4.88 KB
/
table_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from gait.generate_table import generate_table as gait_table
from jumper.generate_table import generate_table as jumper_table
from mhe.generate_table import generate_table as mhe_table
from pendulum.generate_table import generate_table as pendulum_table
from pointing.generate_table import generate_table as pointing_table
from somersault.generate_table import generate_table as somersault_table
import numpy as np
from bioptim import Shooting, OdeSolver, SolutionIntegrator
divergence_threshold = 10
class TableOCP:
def __init__(self):
self.cols = None
def add(self, name):
if not self.cols:
self.cols = [TableOCP.OCP(name)]
else:
self.cols.append(TableOCP.OCP(name))
def __getitem__(self, item_name):
return self.cols[[col.name for col in self.cols].index(item_name)]
def print(self):
for col in self.cols:
col.print()
class OCP:
def __init__(self, name):
self.name = name
self.solver = []
def print(self):
print(f"task = {self.name}")
for solver in self.solver:
solver.print()
class Solver:
def __init__(self, name):
self.nx = -1
self.nu = -1
self.ns = -1
self.name = name
self.ode_solver = None
self.n_iteration = -1
self.cost = 0
self.convergence_time = -1
self.single_shoot_error_t = -1
self.single_shoot_error_r = -1
self.single_shoot_divergence_time = None
def print(self):
print(f"\t\tsolver = {self.name}")
steps = f"internal steps = {self.ode_solver.steps}" if isinstance(self.ode_solver, OdeSolver.RK4) \
else f"polynomial degree = {self.ode_solver.polynomial_degree}"
print(f"\t\t\tns = {type(self.ode_solver).__name__}, {steps}")
print(f"\t\t\tns = {self.ns}")
print(f"\t\t\tnx = {self.nx}")
print(f"\t\t\tnu = {self.nu}")
print(f"\t\t\titerations = {self.n_iteration}")
print(f"\t\t\tcost = {self.cost}")
print(f"\t\t\tconvergence_time (s) = {self.convergence_time}")
print(f"\t\t\tsingle_shoot_error translation (mm) = {self.single_shoot_error_t}")
print(f"\t\t\tsingle_shoot_error rotation (°) = {self.single_shoot_error_r}")
print(f"\t\t\tsingle_shoot_time before divergence of {divergence_threshold}(°) = {self.single_shoot_divergence_time}")
def compute_error_single_shooting(self, sol):
sol_merged = sol.merge_phases()
trans_idx = []
rot_idx = []
for i in sol.ocp.nlp[0].states["q"].mapping.to_second.map_idx:
if i is not None:
if sol.ocp.nlp[0].model.nameDof()[i].to_string()[-4:-1] == "Rot":
rot_idx += [i]
else:
trans_idx += [i]
rot_idx = np.array(list(set(rot_idx)))
trans_idx = np.array(list(set(trans_idx)))
sol_int = sol.integrate(shooting_type=Shooting.SINGLE_CONTINUOUS, merge_phases=True, integrator=SolutionIntegrator.SCIPY_RK45)
jumps = int((sol_merged.states["q"].shape[1] - 1) / (sol_int.states["q"].shape[1] - 1))
if len(rot_idx) > 0:
error_r = sol_int.states["q"][rot_idx, :] - sol_merged.states["q"][rot_idx, ::jumps]
self.single_shoot_error_r = (np.sqrt(np.mean(error_r ** 2)) * 180 / np.pi)
for i in range(error_r.shape[1]):
if np.any(np.abs(error_r[:, i]) > divergence_threshold * np.pi / 180):
self.single_shoot_divergence_time = sol_int.phase_time[-1] / sol_int.ns[0] * i
break
else:
self.single_shoot_error_r = "N.A."
if len(trans_idx) > 0:
self.single_shoot_error_t = (
np.sqrt(
np.mean(
(sol_int.states["q"][trans_idx, :] - sol_merged.states["q"][trans_idx, ::jumps]) ** 2
)
)
/ 1000
)
else:
self.single_shoot_error_t = "N.A."
table = TableOCP()
table.add("gait")
table.add("jumper")
table.add("mhe")
table.add("pendulum")
table.add("pointing")
table.add("somersault")
# gait_table(table["gait"]) # requires 16Gb of RAM and takes time to converge (~1h)
jumper_table(table["jumper"])
mhe_table(table["mhe"])
pendulum_table(table["pendulum"])
pointing_table(table["pointing"])
somersault_table(table["somersault"])
table.print()