This paper used to record the common python fragment
python concurrent processing small frame
#!/usr/bin/env python
import Queue
import sys
import threading
import commands
class MutiThread(threading.Thread):
def __init__(self,target_queue,run_job,r_queue):
self.tq = target_queue
self.rb = run_job
self.rq = r_queue
threading.Thread.__init__(self)
def run(self):
while True:
try:
tname = self.tq.get(False)
self._process_job(tname)
except Queue.Empty:
break
def _process_job(self,target):
self.rq.put(self.rb['m_fun'](target))
class MutiRunner():
def __init__(self,target_queue,run_job,concurrency):
self.concurrency=concurrency
self.target_queue=target_queue
self.run_job=run_job
self.resultqueue=Queue.Queue(0)
self.total=self.target_queue.qsize()
def start(self):
for i in range(1,self.concurrency):
MutiThread(self.target_queue,self.run_job,self.resultqueue).start()
while self.total>0:
try:
ro=self.resultqueue.get()
self.total=self.total-1
self.run_job['r_fun'](ro)
except Queue.Empty:
break
def domd5sum(target):
res=commands.getstatusoutput("md5sum "+target)
return res
def reader(target):
print target[1]
if __name__=='__main__':
diskname=sys.argv[1]
runqueue=Queue.Queue(0)
for i in commands.getoutput("find /"+diskname+"/data/ -name \"blk*\" | grep meta").split('\n'):
runqueue.put(i)
mr=MutiRunner(runqueue,{'m_fun':domd5sum,'r_fun':reader},2)
mr.start()