-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
142 lines (109 loc) · 3.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import web3
from web3 import Web3, HTTPProvider, TestRPCProvider
web3 = Web3(HTTPProvider('http://localhost:8545'))
# Adjacency list: specified by dict: {pubkey --> [list of pubkeys it trusts]}
global_adj_list = {'1': ['2', '3'],
'2': ['1'],
'3': ['2'],
'4': ['5'],
'5': ['4']}
global_rating_list = {'chocl': {'2': 5},
'5': {'1': 0, '3': 3},
'4': {'1': 0}}
# Currently, removes all dangling links
# Later features: allow variable trust ratings
# TODO: Dangling, variable trust
def construct_graph(adjacency_list):
keys = list(adjacency_list.keys())
key_mapping = {keys[i]: i for i in range(len(keys))}
adjacency_matrix = np.zeros((len(keys), len(keys)))
for key, value in adjacency_list.items():
row = np.zeros(len(keys))
for edge in value:
if edge in key_mapping:
row[key_mapping[edge]] = 1
row /= np.sum(row)
adjacency_matrix[:,key_mapping[key]] =
# print(adjacency_matrix)
return key_mapping, adjacency_matrix
def compute_page_rank(key_mapping, adjacency_matrix, rank_source, weighting=0.15):
rank_source = np.array(rank_source)
size = len(rank_source)
# Validity
assert(size == np.shape(adjacency_matrix)[0] == np.shape(adjacency_matrix)[1])
assert(all(sum(adjacency_matrix) == np.ones(size)))
assert(0 <= weighting <= 1)
rank_matrix = (1.0 - weighting) * adjacency_matrix + weighting * np.outer(rank_source, np.ones((1,size)))
lambd, v = np.linalg.eig(rank_matrix)
index = ((abs(lambd.imag) < 0.001) & (abs(lambd.real - 1.0) < 0.001)).nonzero()[0][0]
principal = v[:,index].real
principal = principal/sum(principal)*size
trust_values = {key: principal[key_mapping[key]] for key in key_mapping}
print(trust_values)
return trust_values
def retreive_web_of_trust():
pass
def verify_signature(data, signature, pubkey):
pass
#Data is {'pubkey': pubkey,
# 'new_trusted_edges': [list of trusted edges]}
def new_edges(data, signature):
assert(verify_signature(data, signature, data['pubkey']))
global global_adj_list
pubkey = data['pubkey']
new_trusted_edges = data['new_trusted_edges']
if pubkey not in global_adj_list:
global_adj_list[pubkey] = new_trusted_edges
else:
global_adj_list[pubkey] += new_trusted_edges
def remove_edge(data, signature):
assert(verify_signature(data, signature, data['pubkey']))
global global_adj_list
pubkey = data['pubkey']
no_longer_trusted = data['new_trusted_edges']
if pubkey in global_adj_list:
for not_trusted in no_longer_trusted:
global_adj_list[pubkey].remove(not_trusted)
if len(global_adj_list[pubkey]) == 0:
del global_adj_list[pubkey]
def remove_node():
pass
def new_rating():
pass
def udpate_rating():
pass
def remove_rating():
pass
# Ratings is a dictionary, {pubkey_being_rated: {pubkeys -> ratings of pubkey_being_rated}}
def compute_overall_ratings(all_ratings, trust_values):
aggregated_ratings = {}
for reviewed in all_ratings:
rating = 0
total_trust = 0
for rater in all_ratings[reviewed]:
#print(all_ratings[reviewed][rater])
#print(trust_values[rater])
rating += all_ratings[reviewed][rater] * trust_values[rater]
total_trust += trust_values[rater]
if(total_trust != 0):
rating /= total_trust
aggregated_ratings[reviewed] = (rating, total_trust)
print(aggregated_ratings)
def simulate_attack():
pass
def compute(pull_from_eth=False, rank_source=None, pubkey_rank_source=None, personalization=0.15):
global global_adj_list, global_rating_list
print(global_adj_list)
if pull_from_eth:
global_adj_list = retreive_web_of_trust()
global_rating_list = retreive_rating_list()
key_mapping, adj_matrix = construct_graph(global_adj_list)
if pubkey_rank_source == None and rank_source == None:
rank_source = np.ones(len(key_mapping))/len(key_mapping)
elif pubkey_rank_source != None:
rank_source = np.zeros(len(key_mapping))
rank_source[key_mapping[pubkey_rank_source]] = 1
trust_values = compute_page_rank(key_mapping, adj_matrix, rank_source, personalization)
ratings = compute_overall_ratings(global_rating_list, trust_values)
compute(pubkey_rank_source=None)