-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluation.py
69 lines (57 loc) · 2.59 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
import os
import os.path
import argparse
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
def detected(result, N, K, obj, length, tol):
window = np.sort(result[max(0,obj-N+1):obj+1,1])[::-1]
if window.shape[0] < K or (result[max(0,obj-tol):min(obj+tol+1, length), 1] >= window[K-1]).sum()>0:
return True
return False
def evaluate(source, target, min_object=10, resolution=100, tol=2, delta=[1,2,4]):
source = np.loadtxt(source, dtype=int)
result = np.loadtxt(target)
objects = source.shape[0]
length = result.shape[0]
frames = np.zeros(length, dtype=int)
frames[source] = 1
accuracies = []
for delta in delta:
accuracy = np.ones(resolution+1)
for idx in range(1, resolution+1):
detect, N = 0, idx*length//resolution
for obj in source:
K = max(min_object, int(frames[max(0,obj-N+1):obj+1].sum()*delta))
if detected(result, N, K, obj, length, tol) is True:
detect += 1
accuracy[idx] = detect/objects
accuracies.append(accuracy)
accuracies = np.stack(accuracies, axis=0)
return accuracies, accuracies.mean(axis=1)
if __name__ == "__main__":
# Arguements
parser = argparse.ArgumentParser(description='Evaluate Interestingness')
parser.add_argument("--source", type=str, help="ground-truth file")
parser.add_argument("--target", type=str, help="results file")
parser.add_argument("--min-object", type=int, default=10, help="minimum number of top interests")
parser.add_argument("--resolution", type=int, default=100, help="number of points of the plotted lines")
parser.add_argument("--tol", type=int, default=1, help="the maximum tolerant frames")
parser.add_argument("--delta", nargs='+', type=float, default=[1,2,4], help="top delta*K are accepted, where K is truth")
args = parser.parse_args(); print(args)
x = np.array(range(args.resolution+1))/args.resolution
accuracies, mean = evaluate(args.source, args.target, args.min_object, args.resolution, args.tol, args.delta)
figure(num=1, figsize=(4, 4), facecolor='w', edgecolor='k')
for i in range(accuracies.shape[0]):
line, = plt.plot(x, accuracies[i,:], label='[%.2f'%(mean[i])+r'] $\delta$='+str(args.delta[i]))
plt.legend()
plt.grid()
plt.xlim((0,1))
plt.ylim((0,1))
plt.gca().set_aspect("equal")
print("Accuracy:",mean)
plt.title(r'Accuracy ($\tau$=%d)'%(args.tol))
plt.xlabel('sequence length')
plt.ylabel('accuracy')
plt.show()