-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlongterm.py
139 lines (117 loc) · 6.63 KB
/
longterm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python3
import os
import copy
import tqdm
import torch
import argparse
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import torch.utils.data as Data
import torchvision.transforms as transforms
from torchvision.datasets import CocoDetection
from autoencoder import AutoEncoder
from torchutil import EarlyStopScheduler, count_parameters
def train(loader, net, creterion):
train_loss, batches = 0, len(loader)
enumerater = tqdm.tqdm(enumerate(loader))
for batch_idx, (inputs, _) in enumerater:
if torch.cuda.is_available():
inputs = inputs.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = creterion(inputs, outputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
enumerater.set_description("train loss: %.4f on %d/%d"%(train_loss/(batch_idx+1), batch_idx, batches))
return train_loss/(batch_idx+1)
def performance(loader, net, creterion):
test_loss = 0
with torch.no_grad():
for batch_idx, (inputs, _) in enumerate(loader):
if torch.cuda.is_available():
inputs = inputs.cuda()
outputs = net(inputs)
loss = creterion(inputs, outputs)
test_loss += loss.item()
return test_loss/(batch_idx+1)
if __name__ == "__main__":
# Arguements
parser = argparse.ArgumentParser(description='Train AutoEncoder')
parser.add_argument("--data-root", type=str, default='/data/datasets', help="dataset root folder")
parser.add_argument("--model", type=str, default='vgg', help="vgg, resnet, or mobilenet")
parser.add_argument('--crop-size', nargs='+', type=int, default=[320,320], help='image crop size')
parser.add_argument("--model-save", type=str, default='saves/vgg16.pt', help="model save point")
parser.add_argument('--resume', dest='resume', action='store_true')
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
parser.add_argument("--factor", type=float, default=0.1, help="ReduceLROnPlateau factor")
parser.add_argument("--min-lr", type=float, default=1e-5, help="minimum lr for ReduceLROnPlateau")
parser.add_argument("--patience", type=int, default=5, help="patience of epochs for ReduceLROnPlateau")
parser.add_argument("--epochs", type=int, default=150, help="number of training epochs")
parser.add_argument("--batch-size", type=int, default=16, help="number of minibatch size")
parser.add_argument("--momentum", type=float, default=0, help="momentum of the optimizer")
parser.add_argument("--alpha", type=float, default=0.1, help="weight of TVLoss")
parser.add_argument("--w-decay", type=float, default=1e-5, help="weight decay of the optimizer")
parser.add_argument("--num-workers", type=int, default=4, help="number of workers for dataloader")
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.set_defaults(self_loop=False)
args = parser.parse_args(); print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs("saves", exist_ok=True)
with open(args.model_save+'.txt','a+') as f:
f.write(str(args)+'\n')
train_transform = transforms.Compose([
# transforms.RandomRotation(20),
transforms.RandomResizedCrop(tuple(args.crop_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([
transforms.CenterCrop(tuple(args.crop_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_root = os.path.join(args.data_root, 'coco/images/train2017')
val_root = os.path.join(args.data_root, 'coco/images/val2017')
test_root = os.path.join(args.data_root, 'coco/images/test2017')
train_annFile = os.path.join(args.data_root, 'coco/annotations/annotations_trainval2017/captions_train2017.json')
val_annFile = os.path.join(args.data_root, 'coco/annotations/annotations_trainval2017/captions_val2017.json')
test_annFile = os.path.join(args.data_root, 'coco/annotations/image_info_test2017/image_info_test2017.json')
train_data = CocoDetection(root=train_root, annFile=train_annFile, transform=train_transform)
train_loader = Data.DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.num_workers)
val_data = CocoDetection(root=val_root, annFile=val_annFile, transform=val_transform)
val_loader = Data.DataLoader(dataset=val_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.num_workers)
if args.resume == True:
net, best_loss = torch.load(args.model_save)
print("Resume train from {} with loss {}".format(args.model_save, best_loss))
else:
net = AutoEncoder(args.model)
best_loss = float('Inf')
if torch.cuda.is_available():
print("Runnin on {} GPU".format(list(range(torch.cuda.device_count()))))
net = nn.DataParallel(net.cuda(), device_ids=list(range(torch.cuda.device_count())))
creterion = nn.MSELoss()
optimizer = optim.RMSprop(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.w_decay)
scheduler = EarlyStopScheduler(optimizer, factor=args.factor, verbose=True, min_lr=args.min_lr, patience=args.patience)
print('number of parameters:', count_parameters(net))
for epoch in range(args.epochs):
train_loss = train(train_loader, net, creterion)
val_loss = performance(val_loader, net, creterion) # validate
with open(args.model_save+'.txt','a+') as f:
f.write("epoch: %d, train_loss: %.4f, val_loss: %.4f, lr: %f\n" % (epoch, train_loss, val_loss, optimizer.param_groups[0]['lr']))
if val_loss < best_loss:
print("New best Model, saving...")
torch.save((net.module, val_loss), args.model_save)
best_loss = val_loss
if scheduler.step(val_loss):
print('Early Stopping!')
break
print("Testing")
net, _ = torch.load(args.model_save)
if torch.cuda.is_available():
net = nn.DataParallel(net.cuda(), device_ids=list(range(torch.cuda.device_count())))
test_data = CocoDetection(root=test_root, annFile=test_annFile, transform=val_transform)
test_loader = Data.DataLoader(dataset=test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.num_workers)
test_loss = performance(test_loader, net, creterion)
print('val_loss: %.2f, test_loss, %.4f'%(best_loss, test_loss))