-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathperformance.py
101 lines (87 loc) · 4.69 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
import os
import glob
import os.path
import argparse
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from evaluation import evaluate
if __name__ == "__main__":
# Arguements
parser = argparse.ArgumentParser(description='Evaluate Interestingness')
parser.add_argument("--data-root", type=str, default='/data/datasets', help="dataset root folder")
parser.add_argument("--dataset", type=str, default='SubTF', help="file save flag name")
parser.add_argument("--save-flag", type=str, default='n100usage', help="file save flag name")
parser.add_argument('--root', type=str, default='results', help='results folder')
parser.add_argument("--min-object", type=int, default=1, help="minimum number of top interests")
parser.add_argument("--resolution", type=int, default=100, help="number of points of the plotted lines")
parser.add_argument("--tol", type=int, default=1, help="the maximum tolerant frames")
parser.add_argument("--category", type=str, default='normal', help="normal or difficult")
parser.add_argument("--delta", nargs='+', type=float, default=[1,2,4], help="top delta*K are accepted, where K is truth")
args = parser.parse_args(); print(args)
# interest1 ground truth
file0 = [args.data_root+"/SubTF/ground-truth/0817-ugv0-tunnel0-interest-1.txt"]
file1 = [args.data_root+"/SubTF/ground-truth/0817-ugv1-tunnel0-interest-1.txt"]
file2 = [args.data_root+"/SubTF/ground-truth/0818-ugv0-tunnel1-interest-1.txt"]
file3 = [args.data_root+"/SubTF/ground-truth/0818-ugv1-tunnel1-interest-1.txt"]
file4 = [args.data_root+"/SubTF/ground-truth/0820-ugv0-tunnel1-interest-1.txt"]
file5 = [args.data_root+"/SubTF/ground-truth/0821-ugv0-tunnel0-interest-1.txt"]
file6 = [args.data_root+"/SubTF/ground-truth/0821-ugv1-tunnel0-interest-1.txt"]
interest1 = [file0, file1, file2, file3, file4, file5, file6]
# interest2 ground truth
file0 = [args.data_root+'/SubTF/ground-truth/0817-ugv0-tunnel0-interest-2.txt']
file1 = [args.data_root+"/SubTF/ground-truth/0817-ugv1-tunnel0-interest-2.txt"]
file2 = [args.data_root+"/SubTF/ground-truth/0818-ugv0-tunnel1-interest-2.txt"]
file3 = [args.data_root+"/SubTF/ground-truth/0818-ugv1-tunnel1-interest-2.txt"]
file4 = [args.data_root+"/SubTF/ground-truth/0820-ugv0-tunnel1-interest-2.txt"]
file5 = [args.data_root+"/SubTF/ground-truth/0821-ugv0-tunnel0-interest-2.txt"]
file6 = [args.data_root+"/SubTF/ground-truth/0821-ugv1-tunnel0-interest-2.txt"]
interest2 = [file0, file1, file2, file3, file4, file5, file6]
os.makedirs("performance", exist_ok=True)
if args.category == 'normal':
sources = interest1
elif args.category == 'difficult':
sources = interest2
else:
NotImplementedError('please select interest-1 or interest-2')
mean_accuracies = np.zeros((len(args.delta), args.resolution+1))
mean_means = 0
x = np.array(range(args.resolution+1))/args.resolution
for test_id in range(len(sources)):
target = glob.glob(os.path.join(args.root, args.dataset+'-%d-*-%s.txt'%(test_id, args.save_flag)))
accuracies = np.zeros((len(args.delta), args.resolution+1))
means = np.zeros(len(args.delta))
for source in sources[test_id]:
accuracy, mean = evaluate(source, target[0], args.min_object, args.resolution, args.tol, args.delta)
accuracies += accuracy
means += mean
num = len(sources[test_id])
accuracies = accuracies/num
means = means/num
figure(num=test_id, figsize=(4, 4), facecolor='w', edgecolor='k')
mean_accuracies += accuracies
mean_means += means
for i in range(len(args.delta)):
line, = plt.plot(x, accuracies[i,:], label='[%.2f'%(means[i])+r'] $\delta$='+str(args.delta[i]))
plt.legend()
plt.grid()
plt.xlim((0,1))
plt.ylim((0,1))
plt.gca().set_aspect("equal")
mean_accuracies /= len(sources)
mean_means /= len(sources)
print("mean accuracy:", mean_means)
np.savetxt('performance/%s-accuracy-tol=%d-'%(args.category, args.tol)+args.save_flag+'.txt', mean_accuracies.transpose(),fmt='%.6f')
figure(num=100, figsize=(4, 4), facecolor='w', edgecolor='k')
for i in range(len(args.delta)):
line, = plt.plot(x, mean_accuracies[i,:], label='[%.2f'%(mean_means[i])+r'] $\delta$='+str(args.delta[i]))
plt.legend()
plt.grid()
plt.xlim((0,1))
plt.ylim((0,1))
plt.gca().set_aspect("equal")
plt.title(r'Curve of Real-time Precision ($\tau$=%d)'%(args.tol))
plt.xlabel('sequence length')
plt.ylabel('accuracy')
plt.show()