-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtorchutil.py
427 lines (354 loc) · 14.3 KB
/
torchutil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#!/usr/bin/env python3
import cv2
import time
import math
import torch
import random
import numbers
import torch.fft
import collections
import torchvision
from torch import nn
from itertools import repeat
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
_single = _ntuple(1)
_pair = _ntuple(2)
_triple = _ntuple(3)
_quadruple = _ntuple(4)
class Timer:
def __init__(self):
self.start_time = time.time()
def tic(self):
self.start()
def show(self, prefix="", output=True):
duration = time.time()-self.start_time
if output:
print(prefix+"%fs" % duration)
return duration
def toc(self, prefix=""):
self.end()
print(prefix+"%fs = %fHz" % (self.duration, 1/self.duration))
return self.duration
def start(self):
torch.cuda.synchronize()
self.start_time = time.time()
def end(self):
torch.cuda.synchronize()
self.duration = time.time()-self.start_time
self.start()
return self.duration
class MovAvg(nn.Module):
def __init__(self, window_size=3):
super(MovAvg, self).__init__()
assert(window_size>=1)
self.window_size = window_size
weight = torch.arange(1, window_size+1).type('torch.FloatTensor')
self.register_buffer('weight', torch.zeros(1,1,window_size))
self.weight.data = (weight/weight.sum()).view(1,1,-1)
self.nums = []
def append(self, point):
if len(self.nums) == 0:
self.nums = [point]*self.window_size
else:
self.nums.append(point)
self.nums.pop(0)
return F.conv1d(torch.tensor(self.nums, dtype=torch.float).view(1,1,-1), self.weight).view(-1)
class ConvLoss(nn.Module):
def __init__(self, input_size, kernel_size, stride, in_channels=3, color=1):
super(ConvLoss, self).__init__()
self.color, input_size, kernel_size, stride = color, _pair(input_size), _pair(kernel_size), _pair(stride)
self.conv = nn.Conv2d(in_channels, 1, kernel_size=kernel_size, stride=stride, bias=False)
self.conv.weight.data = torch.ones(self.conv.weight.size()).cuda()/self.conv.weight.numel()
self.width = (input_size[0] - kernel_size[0]) // stride[0] + 1
self.hight = (input_size[0] - kernel_size[1]) // stride[1] + 1
self.pool = nn.MaxPool2d((self.width, self.hight))
def forward(self, x, y):
loss = self.conv((x-y).abs())
value, index = loss.view(-1).max(dim=0)
w = (index//self.width)*self.conv.stride[0]
h = (index%self.width)*self.conv.stride[1]
x[:,:,w:w+self.conv.kernel_size[0],h] -= self.color
x[:,:,w:w+self.conv.kernel_size[0],h+self.conv.kernel_size[1]-1] -= self.color
x[:,:,w,h:h+self.conv.kernel_size[1]] -= self.color
x[:,:,w+self.conv.kernel_size[0]-1,h:h+self.conv.kernel_size[1]] -= self.color
return value
class CosineSimilarity(nn.Module):
'''
Averaged Cosine Similarity for 3-D tensor(C, H, W) over channel dimension
Input Shape:
x: tensor(N, C, H, W)
y: tensor(B, C, H, W)
Output Shape:
o: tensor(N, B)
'''
def __init__(self, eps=1e-7):
super(CosineSimilarity, self).__init__()
self.eps = eps
def forward(self, x, y):
N, C, H, W = x.size()
B, c, h, w = y.size()
assert(C==c and H==h and W==w)
x, y = x.view(N,1,C,H*W), y.view(B,C,H*W)
xx, yy = x.norm(dim=-1), y.norm(dim=-1)
xx[xx<self.eps], yy[yy<self.eps] = self.eps, self.eps
return ((x*y).sum(dim=-1)/(xx*yy)).mean(dim=-1)
class CosineLoss(nn.CosineEmbeddingLoss):
def __init__(self, dim=1):
super(CosineLoss, self).__init__()
self.target = torch.ones(dim).cuda()
def forward(self, x, y):
return super(CosineLoss, self).forward(x, y, self.target)/2
class PearsonLoss(nn.CosineEmbeddingLoss):
def __init__(self, dim=1):
super(PearsonLoss, self).__init__()
self.target = torch.ones(dim).cuda()
def forward(self, x, y):
x = x - x.mean()
y = y - y.mean()
return super(PearsonLoss, self).forward(x, y, self.target)
class Split2d(nn.Module):
def __init__(self, kernel_size=(3, 3)):
super(Split2d, self).__init__()
self.h, self.w = _pair(kernel_size)
self.unfold = nn.Unfold(kernel_size=kernel_size, stride=kernel_size)
def forward(self, x):
output = self.unfold(x).view(x.size(0), x.size(1), self.h, self.w, -1)
return output.permute(0,4,1,2,3).contiguous().view(-1, x.size(1), self.h, self.w)
class FiveSplit2d(nn.Module):
def __init__(self, kernel_size):
super(FiveSplit2d, self).__init__()
self.split = Split2d(kernel_size)
self.kernel_size = _pair(kernel_size)
def forward(self, inputs):
w, h = self.kernel_size
x = (inputs.size(-2) - w) // 2
y = (inputs.size(-1) - h) // 2
split = self.split(inputs)
center = inputs[:,:,x:x+w,y:y+h]
return torch.cat((split, center), dim=0)
class Merge2d(nn.Module):
def __init__(self, output_size, kernel_size):
super(Merge2d, self).__init__()
self.H, self.W = _pair(output_size)
self.h, self.w = _pair(kernel_size)
self.fold = nn.Fold(output_size, kernel_size, stride=kernel_size)
def forward(self, x):
output = x.view(-1, (self.H//self.h)*(self.W//self.w), x.size(1)*self.h*self.w)
return self.fold( output.permute(0,2,1).contiguous())
class VerticalFlip(object):
"""Vertically flip the given PIL Image.
"""
def __init__(self):
pass
def __call__(self, img):
return TF.vflip(img)
def __repr__(self):
return self.__class__.__name__ + '()'
class HorizontalFlip(object):
"""Horizontally flip the given PIL Image.
"""
def __init__(self):
pass
def __call__(self, img):
return TF.hflip(img)
def __repr__(self):
return self.__class__.__name__ + '()'
class RandomMotionBlur(object):
def __init__(self, p=[0.7, 0.2, 0.1]):
self.p = p
kernel_size = 3
self.w3 = torch.zeros(4, kernel_size, kernel_size)
self.w3[0,kernel_size//2,:] = 1.0/kernel_size
self.w3[1,:,kernel_size//2] = 1.0/kernel_size
self.w3[2] = torch.eye(kernel_size)
self.w3[3] = torch.eye(kernel_size).rot90()
kernel_size = 5
self.w5 = torch.zeros(4, kernel_size, kernel_size)
self.w5[0,kernel_size//2,:] = 1.0/kernel_size
self.w5[1,:,kernel_size//2] = 1.0/kernel_size
self.w5[2] = torch.eye(kernel_size)
self.w5[3] = torch.eye(kernel_size).rot90()
def __call__(self, img):
"""
Args:
tensor (Image): Image to be cropped.
Returns:
tensor: Random motion blured image.
"""
p = random.random()
if p <= self.p[0]:
return img
if self.p[0] < p <= self.p[0]+ self.p[1]:
w = self.w3[torch.randint(0,4,(1,))].unsqueeze(0)
kernel_size = 3
elif 1-self.p[2] < p:
w = self.w5[torch.randint(0,4,(1,))].unsqueeze(0)
kernel_size = 5
return F.conv2d(img.unsqueeze(1), w, padding=kernel_size//2).squeeze(1)
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class EarlyStopScheduler(torch.optim.lr_scheduler.ReduceLROnPlateau):
def __init__(self, optimizer, mode='min', factor=0.1, patience=10,
verbose=False, threshold=1e-4, threshold_mode='rel',
cooldown=0, min_lr=0, eps=1e-8):
super().__init__(optimizer=optimizer, mode=mode, factor=factor, patience=patience,
threshold=threshold, threshold_mode=threshold_mode,
cooldown=cooldown, min_lr=min_lr, eps=eps, verbose=verbose)
self.no_decrease = 0
def step(self, metrics, epoch=None):
# convert `metrics` to float, in case it's a zero-dim Tensor
current = float(metrics)
if epoch is None:
epoch = self.last_epoch = self.last_epoch + 1
self.last_epoch = epoch
if self.is_better(current, self.best):
self.best = current
self.num_bad_epochs = 0
else:
self.num_bad_epochs += 1
if self.in_cooldown:
self.cooldown_counter -= 1
self.num_bad_epochs = 0 # ignore any bad epochs in cooldown
if self.num_bad_epochs > self.patience:
self.cooldown_counter = self.cooldown
self.num_bad_epochs = 0
return self._reduce_lr(epoch)
def _reduce_lr(self, epoch):
for i, param_group in enumerate(self.optimizer.param_groups):
old_lr = float(param_group['lr'])
new_lr = max(old_lr * self.factor, self.min_lrs[i])
if old_lr - new_lr > self.eps:
param_group['lr'] = new_lr
if self.verbose:
print('Epoch {:5d}: reducing learning rate'
' of group {} to {:.4e}.'.format(epoch, i, new_lr))
return False
else:
return True
class CorrelationSimilarity(nn.Module):
'''
Correlation Similarity for multi-channel 2-D tensor(C, H, W) via FFT
args: input_size: tuple(H, W) --> size of last two dimensions
Input Shape:
x: tensor(B, C, H, W)
y: tensor(N, C, H, W)
Output Shape:
o: tensor(B, N) --> maximum similarity for (x_i, y_j) {i\in [0,B), j\in [0,N)}
i: tensor(B, N, 2) --> 2-D translation between x_i and y_j
'''
def __init__(self, input_size):
super(CorrelationSimilarity, self).__init__()
self.input_size = input_size = _pair(input_size)
assert(input_size[-1]!=1) # FFT2 is wrong if last dimension is 1
self.N = math.sqrt(input_size[0]*input_size[1])
self.fft_args = {'s': input_size, 'dim':[-2,-1], 'norm': 'ortho'}
self.max = nn.MaxPool2d(kernel_size=input_size)
def forward(self, x, y):
X = torch.fft.rfftn(x, **self.fft_args).unsqueeze(1)
Y = torch.fft.rfftn(y, **self.fft_args)
g = torch.fft.irfftn((X.conj()*Y).sum(2), **self.fft_args)*self.N
xx = x.view(x.size(0),-1).norm(dim=-1).view(x.size(0), 1, 1)
yy = y.view(y.size(0),-1).norm(dim=-1).view(1, y.size(0), 1)
g = g.view(x.size(0), y.size(0),-1)/xx/yy
values, indices = torch.max(g, dim=-1)
indices = torch.stack((indices // self.input_size[1], indices % self.input_size[1]), dim=-1)
values[values>+1] = +1 # prevent from overflow of 1
values[values<-1] = -1 # prevent from overflow of -1
assert((values>+1).sum()==0 and (values<-1).sum()==0)
return values, indices
class Correlation(nn.Module):
'''
Correlation Similarity for multi-channel 2-D patch via FFT
args: input_size: tuple(H, W) --> size of last two dimensions
Input Shape:
x: tensor(B, C, H, W)
y: tensor(B, C, H, W)
Output Shape:
o: tensor(B)
if accept_translation is False, output is the same with cosine similarity
'''
def __init__(self, input_size, accept_translation=True):
super(Correlation, self).__init__()
self.accept_translation = accept_translation
input_size = _pair(input_size)
assert(input_size[-1]!=1) # FFT2 is wrong if last dimension is 1
self.N = math.sqrt(input_size[0]*input_size[1])
self.fft_args = {'s': input_size, 'dim':[-2,-1], 'norm': 'ortho'}
self.max = nn.MaxPool2d(kernel_size=input_size)
def forward(self, x, y):
X = torch.fft.rfftn(x, **self.fft_args)
Y = torch.fft.rfftn(y, **self.fft_args)
g = torch.fft.irfftn((X.conj()*Y).sum(2), **self.fft_args)*self.N
xx = x.view(x.size(0),-1).norm(dim=-1)
yy = y.view(y.size(0),-1).norm(dim=-1)
if self.accept_translation is True:
return self.max(g).view(-1)/xx/yy
else:
return g[:,0,0].view(-1)/xx/yy
class CorrelationLoss(Correlation):
'''
Correlation Similarity for multi-channel 2-D patch via FFT
args: input_size: tuple(H, W) --> size of last two dimensions
Input Shape:
x: tensor(B, C, H, W)
y: tensor(B, C, H, W)
Output Shape:
o: tensor(1) if 'reduce' is True
o: tensor(B) if 'reduce' is not True
'''
def __init__(self, input_size, reduce = True, accept_translation=True):
super(CorrelationLoss, self).__init__(input_size, accept_translation)
self.reduce = reduce
def forward(self, x, y):
loss = (1 - super(CorrelationLoss, self).forward(x, y))/2
if self.reduce is True:
return loss.mean()
else:
return loss
def rolls2d(inputs, shifts, dims=[-2,-1]):
'''
shifts: list of tuple/ints for 2-D/1-D roll
dims: along which dimensions to shift
inputs: tensor(N, C, H, W); shifts has to be int tensor
if shifts: tensor(B, N, 2)
output: tensor(B, N, C, H, W)
if shifts: tensor(N, 2)
output: tensor(N, C, H, W)
'''
shift_size = shifts.size()
N, C, H, W = inputs.size()
assert(shift_size[-1]==2 and N==shift_size[1])
if len(shift_size) == 2:
return torch.stack([inputs[i].roll(shifts[i].tolist(), dims) for i in range(N)], dim=0)
elif len(shift_size) == 3:
B = shift_size[0]
o = torch.stack([inputs[i].roll(shifts[j,i].tolist(), dims) for j in range(B) for i in range(N)], dim=0)
return o.view(B, N, C, H, W)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def show_batch(batch, name='video', waitkey=1):
min_v = torch.min(batch)
range_v = torch.max(batch) - min_v
if range_v > 0:
batch = (batch - min_v) / range_v
else:
batch = torch.zeros(batch.size())
grid = torchvision.utils.make_grid(batch, padding=0).cpu()
img = grid.numpy()[::-1].transpose((1, 2, 0))
cv2.imshow(name, img)
cv2.waitKey(waitkey)
return img
def show_batch_origin(batch, name='video', waitkey=1):
grid = torchvision.utils.make_grid(batch).cpu()
img = grid.numpy()[::-1].transpose((1, 2, 0))
cv2.imshow(name, img)
cv2.waitKey(waitkey)
return img