-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
43 lines (30 loc) · 1.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gym
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.ppo.policies import MlpPolicy
from queue_env import QueueEnv
def evaluate(model, num_steps=1000):
"""
Evaluate a RL agent
:param model: (BaseRLModel object) the RL Agent
:param num_episodes: (int) number of episodes to evaluate it
:return: (float) Mean reward for the last num_episodes
"""
# This function will only work for a single Environment
env = model.get_env()
step_rewards = []
for i in range(num_steps):
# _states are only useful when using LSTM policies
action, _states = model.predict(obs)
# here, action, rewards and dones are arrays
# because we are using vectorized env
obs, reward, done, info = env.step(action)
step_rewards.append(reward)
agg_reward = sum(step_rewards)
print("Sum rewards:", agg_reward, "Num steps:", num_steps)
return agg_reward
env = QueueEnv()
model = PPO(MlpPolicy, env, verbose=0)
model.learn(total_timesteps=2000000)
# Random Agent, before training
#reward_before_train = evaluate(model, num_steps=1000)