-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.cpp
493 lines (396 loc) · 13.4 KB
/
cnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// #include "cnn.h"
// #include "conv.h"
// namespace ml {
// CNN::CNN(std::vector<CNN_layer_struct> in_layers)
// {
// uint32_t insize = 0;
// layers = in_layers;
// // The tricky part is allocating the proper tensors
// for(int i = 0; i < layers.size(); i++){
// CNN_layer_struct & lay = layers[i];
// // lay->X is the input lay->Z is the output
// switch(lay.type){
// case Layer_Type::ReLU: case Layer_Type::Softmax:
// lay.output_size[0] = layers[i - 1].output_size[0];
// lay.output_size[1] = layers[i - 1].output_size[1];
// lay.output_size[2] = layers[i - 1].output_size[2];
// if(lay.in_place)
// lay.Z = layers[i - 1].Z;
// else
// lay.Z = new Tensor(layers[i-1].output_size[0],lay.output_size[1],lay.output_size[2]);
// break;
// case Layer_Type::Pool:
// lay.Z = new Tensor(lay.output_size[0],lay.output_size[1],lay.output_size[2]);
// break;
// case Layer_Type::Conv:
// lay.Z = new Tensor(lay.output_size[0],lay.output_size[1],lay.output_size[2]);
// lay.W = new Tensor[lay.output_size[0]]();
// for(int i =0 ; i < lay.output_size[0]; i++){
// lay.W[i].allocate(lay.input_channels,lay.kernel_width,lay.kernel_width);
// }
// lay.B = new Tensor(1,1,lay.output_size[0]);
// break;
// case Layer_Type::Linear:
// insize = layers[i-1].output_size[0] * layers[i-1].output_size[1] * layers[i-1].output_size[2];
// lay.Z = new Tensor(1,1,lay.output_size[2]);
// lay.W = new Tensor(1,lay.output_size[2],insize);
// lay.B = new Tensor(1,1,lay.output_size[2]);
// break;
// default:
// throw std::runtime_error("Layer not implemented !\n");
// }
// }
// }
// CNN::~CNN()
// {
// for(int i = 0; i < layers.size(); i++){
// CNN_layer_struct & lay = layers[i];
// // lay->X is the input lay->Z is the output
// switch(lay.type){
// case Layer_Type::ReLU:
// if(!(lay.in_place))
// delete lay.Z;
// break;
// case Layer_Type::Softmax:
// case Layer_Type::Pool:
// delete lay.Z;
// break;
// case Layer_Type::Conv:
// delete lay.Z;
// delete [] lay.W;
// delete lay.B;
// break;
// case Layer_Type::Linear:
// delete lay.Z;
// delete lay.W;
// delete lay.B;
// break;
// default:
// printf("Rogue unimplemented layer found during deallocation !\n");
// }
// }
// }
// /* Implement Inference here !*/
// Tensor * CNN::inference(Tensor * input)
// {
// Tensor * X = input;
// //printf("%s", "a \n");
// for(int i = 0; i < layers.size(); i++){
// //printf("%d", i);
// CNN_layer_struct & lay = layers[i];
// auto start = mtick();
// switch(lay.type){
// case Layer_Type::ReLU:
// switch(lay.in_place){
// case true:
// //printf("%s", "relu in place \n");
// ReLU(X, X);
// runtime[2] += mtock(start);
// break;
// case false:
// //printf("%s", "relu not in place \n");
// ReLU(X, lay.Z);
// runtime[2] += mtock(start);
// break;
// }
// break;
// case Layer_Type::Softmax:
// //printf("%s", "softmax \n");
// Softmax(X, lay.Z);
// runtime[4] += mtock(start);
// break;
// case Layer_Type::Pool:
// //printf("%s", "pool \n");
// maxPool(X, lay.Z);
// runtime[1] += mtock(start);
// break;
// case Layer_Type::Conv:
// if(lay.pad!=0){
// //printf("%s", "will perform padding\n");
// X = padTensor(X, lay.pad);
// //printf("%s", "performed\n");
// }
// //printf("%s", "conv \n");
// //CIRCULAR CONV
// conv2d(X, lay.W, lay.B, lay.Z);
// // //WINOGRAD TRANSFORMATION
// Tensor * W_wino = winoWeights(lay.W, lay.Z->size[0]);
// //printf("kernel_size: %d\n", lay.kernel_width);//// print kernel_size
// convWinograd(X, W_wino, lay.B, lay.Z, lay.W->size[2]);
// runtime[3] += mtock(start);
// break;
// case Layer_Type::Linear:
// //printf("%s", "linear \n");
// Linear(X, lay.W, lay.B, lay.Z);
// runtime[0] += mtock(start);
// break;
// default:
// throw std::runtime_error("Layer not implemented !\n");
// }
// X = lay.Z;
// }
// //printf("%s", "return \n");
// return X;
// }
// }
#include "cnn.h"
#include "conv.h"
namespace ml {
CNN::CNN(std::vector<CNN_layer_struct> in_layers)
{
uint32_t insize = 0;
layers = in_layers;
// The tricky part is allocating the proper tensors
for(int i = 0; i < layers.size(); i++){
CNN_layer_struct & lay = layers[i];
// lay->X is the input lay->Z is the output
switch(lay.type){
case Layer_Type::ReLU: case Layer_Type::Softmax:
lay.output_size[0] = layers[i - 1].output_size[0];
lay.output_size[1] = layers[i - 1].output_size[1];
lay.output_size[2] = layers[i - 1].output_size[2];
if(lay.in_place)
lay.Z = layers[i - 1].Z;
else
lay.Z = new Tensor(layers[i-1].output_size[0],lay.output_size[1],lay.output_size[2]);
break;
case Layer_Type::Pool:
lay.Z = new Tensor(lay.output_size[0],lay.output_size[1],lay.output_size[2]);
break;
case Layer_Type::Conv:
lay.Z = new Tensor(lay.output_size[0],lay.output_size[1],lay.output_size[2]);
lay.W = new Tensor[lay.output_size[0]]();
for(int i =0 ; i < lay.output_size[0]; i++){
lay.W[i].allocate(lay.input_channels,lay.kernel_width,lay.kernel_width);
}
lay.B = new Tensor(1,1,lay.output_size[0]);
break;
case Layer_Type::Linear:
insize = layers[i-1].output_size[0] * layers[i-1].output_size[1] * layers[i-1].output_size[2];
lay.Z = new Tensor(1,1,lay.output_size[2]);
lay.W = new Tensor(1,lay.output_size[2],insize);
lay.B = new Tensor(1,1,lay.output_size[2]);
break;
case Layer_Type::FPGAConv:
lay.Z = new Tensor(num_chnl_op,outDim, outDim );
lay.W = new Tensor[num_chnl_op]();
for(int i =0 ; i < num_chnl_op; i++){
lay.W[i].allocate(num_chnl_ip,KernelSize,KernelSize);
}
lay.B = new Tensor(1,1,num_chnl_op);
break;
default:
throw std::runtime_error("Layer not implemented !\n");
}
}
}
CNN::~CNN()
{
for(int i = 0; i < layers.size(); i++){
CNN_layer_struct & lay = layers[i];
// lay->X is the input lay->Z is the output
switch(lay.type){
case Layer_Type::ReLU:
if(!(lay.in_place))
delete lay.Z;
break;
case Layer_Type::Softmax:
case Layer_Type::Pool:
delete lay.Z;
break;
case Layer_Type::Conv:
delete lay.Z;
delete [] lay.W;
delete lay.B;
break;
case Layer_Type::Linear:
delete lay.Z;
delete lay.W;
delete lay.B;
break;
case Layer_Type::FPGAConv:
delete lay.Z;
delete [] lay.W;
delete lay.B;
break;
default:
printf("Rogue unimplemented layer found during deallocation !\n");
}
}
}
/* Implement Inference (classification) here !
* The input is a tensor of size (1,1,28,28) and the output is a tensor of size (1,1,10)
* The output is the probability of each class
* Softmax is the last layer
* After a convolutional layer, no convolutional layer and no pooling layer can be used
* The information of the different layers is in the layers vector: type, sequence, configuration
* Smallnet, mediumNet and bigNet are CNNs that take 3x128x128 images as input and classify them into 100 classes
* Layer Struct: type, output_size[3] = size of Z, kernel_width = size of W, input_channels( size[0] of previous layers Z ),
* pad = size of the zero-padding, bool in_place, Z(output tensor),W (weight tensor array),B (bias tensor)
* */
Tensor * CNN::inference(Tensor * input)
{
//medium
Tensor * X = input;
/***************************************/
PYNQ_loadBitstream( (char*) "");
PYNQ_MMIO_WINDOW led, hls;
PYNQ_createMMIOWindow( &led, 0x40010000, 8);
PYNQ_createMMIOWindow( &hls, 0x40000000, 64);
uint32_t* b_led = (uint32_t*) led.buffer;
b_led[1] = 0;
b_led[0] = 3;
/***********************************/
for(int i = 0; i < layers.size(); i++){
CNN_layer_struct & lay = layers[i];
switch (lay.type) {
case Layer_Type::Linear:
{
auto start = mtick();
Linear(X, lay.W, lay.B, lay.Z);
double time = mtock(start);
runtime[0] += time;
//printf("Type: Linear\n");
break;
}
case Layer_Type::Pool:
{
auto start = mtick();
maxPool(X, lay.Z);
double time = mtock(start);
runtime[1] += time;
//printf("Type: Pool\n");
break;
}
case Layer_Type::ReLU:
{
auto start = mtick();
ReLU(X, lay.Z);
double time = mtock(start);
runtime[2] += time;
//printf("Type: ReLU\n");
break;
}
case Layer_Type::Conv:
{
//for basic conv
auto start = mtick();
X = padTensor(X, lay.pad);
//Basic conv on Processor:
conv2d(X, lay.W, lay.B, lay.Z);
double time = mtock(start);
runtime[3] += time;
//printf("Type: Conv\n");
// break;
//// // for winograd
//auto start = mtick();
//Tensor * W_wino = winoWeights(lay.W, lay.Z->size[0]);
//// print kernel_size
////printf("kernel_size: %d\n", lay.kernel_width);
//convWinograd(X, W_wino, lay.B, lay.Z, lay.W->size[2]);
//double time = mtock(start);
//runtime[3] += time;
////printf("Type: Conv\n");
break;
//FFT
// auto start = mtick();
// C_Tensor * W_wino = fftWeights(lay.W, lay.Z->size[0]);
// convFFT(X, W_wino, lay.B, lay.Z, lay.W->size[2]);
// double time = mtock(start);
// runtime[3] += time;
// //printf("Type: Conv\n");
// break;
}
case Layer_Type::Softmax:
{
auto start = mtick();
Softmax(X, lay.Z);
double time = mtock(start);
runtime[4] += time;
//printf("Type: Softmax\n");
break;
}
case Layer_Type::FPGAConv:
{
//shared ptr
tensorToFpgaStructP fpgaInput = tensorTofpgaStruct(X, lay.W, lay.B);
//printf(" tensor to fpga struct conv successs\n");
/********************************************PYNQ FPGA CONFIG CONT. ***************************************************/
tensorToFpgaStructP fpgaInput = tensorTofpgaStruct(X, lay.W, lay.B);
PYNQ_SHARED_MEMORY sm_x, sm_w, sm_z, sm_b;
PYNQ_allocateSharedMemory( &sm_x, num_chnl_ip*inputWidth*inputWidth*sizeof(float) ); //complete Image flattened
PYNQ_allocateSharedMemory( &sm_w, num_chnl_ip*num_chnl_op*KernelSize*KernelSize*sizeof(float) ); //Array of Filters flattened
PYNQ_allocateSharedMemory( &sm_z, num_chnl_op*outDim*outDim*sizeof(float) ); //Flattened memory for Storing Z result from FPGA output
PYNQ_allocateSharedMemory( &sm_b, num_chnl_op*sizeof(float) ); //Flattened memory for Bias
float* virt_x = ( float*)sm_x.pointer;
float* virt_w = (float*)sm_w.pointer;
float* virt_z = (float*)sm_z.pointer;
float* virt_b = (float*)sm_z.pointer;
size_t size_x = inputWidth * inputWidth * sizeof(float);
for (size_t i = 0; i < num_chnl_ip; i++)
{
memcpy(virt_x + (inputWidth * inputWidth * i), fpgaInput->X[i].X_c, size_x);
}
size_t size_w = KernelSize * KernelSize * sizeof(float);
for( size_t c = 0; c < num_chnl_op; c++)
{
for (size_t i = 0; i < num_chnl_ip; i++)
{
memcpy( virt_x + (KernelSize * KernelSize * i), fpgaInput->W[c].ith_filter[i].W_c, size_w );
}
}
/** TODO: check copying of Z in FPGA to this shared pointer */
size_t size_b = num_chnl_op*sizeof(float);
for (size_t i = 0; i < num_chnl_op; i++)
{
memcpy(virt_b + (i), fpgaInput->B, size_b);
}
/** Copy the address over axi_lite
* The shared pointer is given to IP via AXI_lite interface
*/
memcpy( hls.buffer + /** offset */, &(sm_x.physical_addr), sizeof(size_t) );
memcpy( hls.buffer + /** offset */, &(sm_w.physical_addr), sizeof(size_t) );
memcpy( hls.buffer + /** offset */, &(sm_z.physical_addr), sizeof(size_t) );
memcpy( hls.buffer + /** offset */, &(sm_b.physical_addr), sizeof(size_t) );
/**
* Monitor this variable for idle or not to check if FPGA finished the task
* Also to start the IP running
*/
uint32_t* hls_ctrl = (uint32_t*) hls.buffer;
//monitor hls, test wait for hls, refer synthesis report
//wait until 3rd b
//memcpy(sm_x.virtual,&
//memcpy(sm_x.virtual,&(fpgaInput->X[0].X_c[0][0]),sizeof(float) );
/**************************************PYNQ_FPGA CONFIG ENDS************************************************************/
auto start = mtick();
//load bit stream
//fpgaInput->;
//pynqHandling( conv.bit);
//printf("Starting EntryConv\n");
//EntryConv(fpgaInput->X, fpgaInput->W, fpgaInput->Z, fpgaInput->B );
//printf("EntryConv success\n");
//Start the Convlution on FPGA
*ptr_ctrl = 0b1; //setting first bit to start
//Wait until FPGA returns
while( ! (*ptr_ctrl & 0b100 ) ) {};
double time = mtock(start);
runtime[5] += time;
//printf("Starting fpga to tensor struct conv\n");
printf("%f\n", virt_z[i]);
printf("\nFPGA processing finished, exiting...\n");
//TODO: free memory hls.buffer and other #####important#######
PYNQ_closeMMIOWindow(&led);
exit(0);
Tensor* fpgaStructToTensor = fpgaStructToTensorFunc( fpgaInput->Z );
//printf("fpga to tensor struct conv success\n");
lay.Z = fpgaStructToTensor;
break;
}
default:
throw(std::runtime_error("Rogue unimplemented layer found during inference !\n"));
}
X = lay.Z;
}
return X;
}
}