-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrain_fast_robust_vgg_eb.py
56 lines (46 loc) · 1.57 KB
/
retrain_fast_robust_vgg_eb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch
from utils import *
unpruned_eb = sys.argv[1]
pct = float(sys.argv[2])
log_folder = sys.argv[4]
data_dir = sys.argv[3]
dataset = sys.argv[5]
weight_before_prune = fix_robustness_ckpt(torch.load(unpruned_eb))
if dataset == 'cifar10':
os.system(f'python "Early-Bird-Tickets/vggprune.py" \
--dataset cifar10 \
--test-batch-size 128 \
--depth 16 \
--percent {pct} \
--model "{unpruned_eb}" \
--save "tmp" \
--gpu_ids 0')
cfg = torch.load('tmp/pruned.pth.tar')['cfg']
model = vgg(16, seed=0)
model.load_state_dict(weight_before_prune, strict=False)
initial_weights, mask = get_pruned_init(model, cfg, pct, 'cifar10')
torch.save(initial_weights.state_dict(), 'tmp/eb_reset.pt')
elif dataset == 'cifar100':
os.system(f'python "Early-Bird-Tickets/vggprune.py" \
--dataset cifar100 \
--test-batch-size 128 \
--depth 16 \
--percent {pct} \
--model "{unpruned_eb}" \
--save "tmp" \
--gpu_ids 0')
cfg = torch.load('tmp/pruned.pth.tar')['cfg']
model = vgg(16, dataset='cifar100', seed=0)
model.load_state_dict(weight_before_prune, strict=False)
initial_weights, mask = get_pruned_init(model, cfg, pct, 'cifar100')
torch.save(initial_weights.state_dict(), 'tmp/eb_reset.pt')
print(initial_weights)
os.system(f'python "fast_adversarial-master/CIFAR10/train_fgsm.py" \
--cfg-dir=tmp/pruned.pth.tar \
--model-dir=tmp/eb_reset.pt \
--data-dir="{data_dir}" \
--epochs=110 \
--out-dir="store/{log_folder}" \
--dataset="{dataset}"'
)