-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclass_9.tex
134 lines (116 loc) · 4.5 KB
/
class_9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
\chapter{First Order Logic (FOL)}
\begin{definition}
Interpretation $I$ in first-order structure:
\begin{enumerate}
\item Domain $D_I$
\item for each $n$-ary function symbol $f \in F$, $[f]_I: D_I^n \to D_I$
\item for each $n$-ary predicate symbol $p \in P$, $[p]_I: D_I^n \to B = \{true,false\}$
\item "context" (environment) for each (free) variable $x \in X$, $[x]_I \in D_I$
\end{enumerate}
\end{definition}
Formula $\phi$ is closed if it has no free variables.
Given an interpretation $I$, a term $t$ and a formula $\phi$ have the following meaning:
\[
\begin{split}
[t]_I &= \begin{cases}
[x]_I & t=x \\
[f]_I([t_1]_I, [t_2]_I, \dots, [t_n]_I) & t=f(t_1, \dots, t_n)
\end{cases}
\end{split}
\]
\[
\begin{split}
[\phi]_I &= \begin{cases}
[x]_I & t=x \\
[p]_I([t_1]_I, [t_2]_I, \dots, [t_n]_I) & \phi = p(t_1, \dots, t_n)
\end{cases}
\end{split}
\]
\[
\begin{split}
[\phi_1 \Rightarrow \phi_2]_I &= \textit{True iff} [\phi_1]_I = false \textit{ or } [\phi_2]_I = true
\end{split}
\]
\[
[\forall x. \phi]_I = \textit{True iff for all } d \in D_I, [\phi]_{I[x \to d]}
\]
\[
[\exists x. \phi]_I = \textit{True iff for some } d \in D_I, [\phi]_{I[x \to d]}
\]
\[
\phi \textit{ valid } (\vDash \phi) \textit{ iff } [\phi]_I = \textit{True for all interpretations } I
\]
\[
\phi \textit{ satisfiable } \textit{ iff } [\phi]_I = \textit{True for some interpretations } I
\]
\subsection{Small Detour}
PCP (Post Correspondence Problem): Given a finite set $S$ of dominoes $\frac{s}{t}$ where $s,t \in \{0,1\}^*$. Is there a finite sequence $\frac{s_1}{t_1}, \dots \frac{s_n}{t_n}$ of (possibly repeating) dominoes from $S$ such that the
$$s_1 \cdot s_2 \cdot \dots \cdot s_n = t_1 \cdot t_2 \dots \cdot t_n$$
\begin{theorem}
The PCP problem is undecidable.
\end{theorem}
\subsection{Back to Work}
\begin{metatheorem}
\begin{enumerate}
\item (Compactness) Set $\Gamma$ of formulas is satisfiable iff every finite subset of $\Gamma$ is satisfiable.
\item (Lowenheim-Skolem). If a set $\Gamma$ of formulas is satisfiable then $\Gamma$ is satisfiable by an interpretation with countable domain.
\item Both the validity and satisfiability problems for FOL are undecidable.
\end{enumerate}
\end{metatheorem}
\begin{proof}
(Proof sketch of undecidability) Let $F = \{e,f_0, f_1\}$ where $e$ is 0-ary and $f_0,f_1$ are unary. Basically a string $011$ of 0,1s is represented as $f_1(f_1(f_0(e)))$.
Let $P = \{p\}$ where $p$ is a binary predicate. Basically a domino $\frac{s}{t}$ is represented by $p(s,t)$.
Given an instance $R$ of PCP, the formula $\phi_R = (\phi_1 \wedge \phi_2) \Rightarrow \phi_3$ is valid iff the answer to $R$ is yes:
\[
\begin{split}
\phi_1 &= \bigwedge_{1 \leq i \leq k} P(s_i(e), t_i(e)) \\
\phi_2 &= \forall v,w. (p(v,w) \Rightarrow \bigwedge_{1 \leq i \leq k} p(s_i(v), t_i(w))) \\
\phi_3 &= \exists z. p(z,z)
\end{split}
\]
\end{proof}
\subsection{Three Sound and Complete Proof Systems}
\subsubsection{Hilbert}
\[
\begin{split}
1. &(\forall x. \phi) \Rightarrow \phi[x:=t] \\
2. &\forall x. (\phi \Rightarrow \psi) \Rightarrow (\forall x. \phi) \Rightarrow (\forall x. \psi) \\
3. & \phi \Rightarrow \forall x. \phi ~~~ \textit{provided that } x \textit{ is not free in } \phi
\end{split}
\]
($\phi[x:=t]$ means safely replacing each occurrence of $x$ by $t$) \\
\subsection{Gentzen}
\[
\begin{split}
\frac{\Gamma, \phi[x:=t] \vdash \Delta}{\Gamma, \forall x. \phi \vdash \Gamma} & \forall-elim \\
\frac{\Gamma \vdash \Delta, \phi[x:=y]}{\Gamma \vdash \Delta, \forall x. \phi} & \forall-intro \textit{ y is a new (fresh) variable} \\
\frac{\Gamma, \phi[x:=y]}{\Gamma, \exists x. \phi \vdash \Delta} & \exists-elim \\
\frac{\Gamma \vdash \Delta, \phi[x:=t]}{\Gamma \vdash \Delta, \exists x. \phi} & \exists-intro
\end{split}
\]
\subsection{Natural Deduction}
\[
\begin{split}
\frac{\forall x \phi}{\phi[x:=t]} \\
\frac{\phi[x:=t]}{\exists x. \phi} \\
\frac{\begin{bmatrix}
y \textit{ new} \\
...\\
\phi[x:=y]
\end{bmatrix}}{\forall x. \phi} \\
\frac{ \exists x. \phi, \begin{bmatrix}
y: \phi[x:=y] \\
...\\
\psi
\end{bmatrix}}{\psi}
\end{split}
\]
\begin{homework} Prove de Morgan for quantifiers
\[
\forall x. \phi \Leftrightarrow \not \exists x. \not \phi
\]
in all three systems.
\end{homework}
\begin{homework}
Use PCP to show satisfiability of FOL is undecidable.
\end{homework}