Skip to content

Latest commit

 

History

History
executable file
·
1382 lines (1291 loc) · 60.9 KB

Digital-Logic.md

File metadata and controls

executable file
·
1382 lines (1291 loc) · 60.9 KB

Formulae

FRL Self Duality

  • How many self-dual functions can be made with n variables?
    • Total number of combinations: $2^n$
    • Total number of Boolean functions: $2^{2^n}$
    • Total number of self-dual functions: $2^{2^{n-1}}$

FRL Properties of Gates

  • AND Gate:

    • $A . 0 = 0$
    • $A . 1 = A$
    • $A . \bar A = 0$
  • OR Gate:

    • $A + 0 = A$
    • $A + 1 = 1$
    • $A + \bar A = 1$
  • XOR Gate:

    • $A ⊕ A = 0$
    • $A ⊕ \bar A = 1$
    • $A ⊕ 0 = A$ // Output is same as input
    • $A ⊕ 1 = \bar A$ // Output is inverted
    • $A ⊕ A ⊕ A ⊕ A ⊕ A ⊕ A ... n\ times$:
      • If n is even, result $=0$
      • If n is odd, result $=A$
  • NAND Gate: If any 1 of the inputs is 0, output is 1.

  • NOR Gate: If any 1 of the inputs is 1, output is 0.

  • XNOR Gate:

    • $A ⊙ A = 1$
    • $A ⊙ \bar A = 0$
    • $A ⊙ 0 = \bar A$ // Output is inverted
    • $A ⊙ 1 = A$ // Output is same as input
    • $A ⊙ A ⊙ A ⊙ A ⊙ A ⊙ A ... n\ times$:
      • If n is even, result $=1$
      • If n is odd, result $=A$

FRL Signed Magnitude & Complement

  • For Signed Magniture (SM) & 1's Complement: For n-bits, there are $2^n$ possible numbers, and the ranges are $-(2^{n-1}-1)$ to $(2^{n-1}-1)$

    If Range is $0$ to $2^n/2 - 1$, then $2^n/2-1=2^{n}.2^{-1}-1=2^{n-1}-1$

  • For 2's Complement: For n-bits, there are $2^n$ possible numbers, and the ranges are $-(2^{n-1})$ to $(2^{n-1}-1)$

    The negative range starts at one less than the previous, while the positive range remains the same.

Gates

Properties of Gates:

  • Idempotent: $A.A = A$
  • Commutative: $A.B = B.A$
  • Associative: $(A+B)+C = A+(B+C)$

[1/0 = Doesn't have/has property]

Gates Symbol Idempotent/Closure Commutative Associative
NOT ¬ 0 NA NA
AND . 1 1 1
OR + 1 1 1
NAND 0 1 0
NOR 0 1 0
XOR 0 1 1
XNOR 0 1 1

Types of Gates

  • Basic Gates: The most basic of all: AND, OR, NOT
  • Universal Gates: Combination of basic gates, can be used to make any other gate: NAND (AND + NOT), NOR (OR + NOT)
  • Arithmetic Gates: Used to perform arithmetic operations: XOR, XNOR
  • Evaluation:
    • AND: 1 if both A & B are 1, otherwise 0.
    • OR: 1 if either of A or B are 1, otherwise 0.
    • NOR: Negation of OR, 1 if A OR B is 0, otherwise 0.
    • NAND: Negation or AND, 1 if A AND B is 0, otherwise 0.
    • XOR: 1 if both A & B are different, otherwise 0.
    • XNOR: 1 if both A & B are same, otherwise 0.

logic gates

Image taken from here


A B AND OR NOR NAND XOR XNOR
A B A.B A+B ¬(A.B) ¬(A+B) A ⊕ B A ⊙ B
0 0 0 0 1 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 1 1 0 0 0 1

Basic Gates: AND, OR and NOT

AND Gate

  • Inputs: $A$, $B$ | Outputs: $Y$
  • If any 1 of the inputs is 0, output is 0.
  • Truth-Table:
    A B Y
    0 0 0
    0 1 0
    1 0 0
    1 1 1

OR Gate

  • Inputs: $A$, $B$ | Outputs: $Y$
  • If any 1 of the inputs is 1, output is 1.
  • Truth-Table:
    A B Y
    0 0 0
    0 1 1
    1 0 1
    1 1 1

NOT Gate

  • Inputs: $A$ | Outputs: $Y$
  • If any 1 of the inputs is 1, output is 1.
  • Truth-Table:
    A Y
    0 1
    1 0

Universal Gates: NAND and NOR

NAND Gate

  • Inputs: $A$, $B$ | Outputs: $Y$
  • If any 1 of the inputs is 0, output is 1.
  • Truth-Table:
    A B Y
    0 0 1
    0 1 1
    1 0 1
    1 1 0

NOR Gate

  • Inputs: $A$, $B$ | Outputs: $Y$

  • If any 1 of the inputs is 1, output is 0.

  • Truth-Table:

    A B Y
    0 0 1
    0 1 0
    1 0 0
    1 1 0
  • To implement OR gate, we need 3 NAND gates or 2 NOR gates.

    Gates NAND NOR
    NOT 1 1
    AND 2 3
    OR 3 2
    XOR 4 5
    XNOR 5 4

Arithmetic Gates (XOR, XNOR)

XOR Gate

  • If 2 inputs are A & B, A ⊕ B = $A \bar B + \bar AB$
  • If both inputs are same, output will be 0, otherwise 1.
  • In a K-Map, if the diagonals are covered with 1, we can take XOR of the variables.
  • Truth Table:
    A B Y
    0 0 0
    0 1 1
    1 0 1
    1 1 0
  • Examples:
    1. $A ⊕ A = 0$
    2. $A ⊕ \bar A = 1$
    3. $A ⊕ 0 = A$ (Exchange property: In (i), put 0 in LHS & A in RHS)
    4. $A ⊕ 1 = \bar A$ (Exchange property: In (ii), put 1 in LHS & $\bar A$ in RHS)
    5. $A ⊕ A ⊕ A ⊕ A ⊕ A ⊕ A ... n\ times$:
      • If n is even (for example $n=4$), $A ⊕ A ⊕ A ⊕ A = 0 ⊕ 0 = 0$
      • If n is odd (for example $n=3$), $A ⊕ A ⊕ A = 0 ⊕ A = A$
  • XOR Gate can be used as buffer/inverter: Since $A ⊕ 0 = A$ & $A ⊕ 1 = \bar A$, we can give an input A & use the 2nd input as control. If the control is 0, output is same as input, otherwise output is inverted.

XNOR Gate

  • Negation (¬) of XOR Gate.
  • If 2 inputs are A & B, A ⊙ B = $AB + \bar A \bar B$
  • If both inputs are same, output will be 1, otherwise 0.
  • Truth Table:
    A B Y
    0 0 1
    0 1 0
    1 0 0
    1 1 1
  • Examples:
    1. $A ⊙ A = 1$
    2. $A ⊙ \bar A = 0$
    3. $A ⊙ 0 = \bar A$ (Exchange property: In (i), put 0 in LHS & A in RHS)
    4. $A ⊙ 1 = A$ (Exchange property: In (ii), put 1 in LHS & $\bar A$ in RHS)
    5. $A ⊙ A ⊙ A ⊙ A ⊙ A ⊙ A ... n\ times$:
      • If n is even (for example $n=4$), $A ⊙ A ⊙ A ⊙ A = 1 ⊙ 1 = 1$
      • If n is odd (for example $n=3$), $A ⊙ A ⊙ A = 1 ⊕ A = A$
  • XNOR Gate can be used as buffer/inverter: Since $A ⊙ 0 = \bar A$ & $A ⊙ 1 = A$, we can give an input A & use the 2nd input as control. If the control is 1, output is same as input, otherwise output is inverted.

Sum of Product & Canonical Sum of Product

  • SoP need not contain all the literals, but in Canonical form, each product term should contain all literals, be it in complemented or un-complemented form.

  • The product terms themselves are called the min-terms.

  • Sum of all min-terms for which output $f= 1$, is called Canonical Sum of Product, or disjunctive normal form.

  • Truth Table:

    x y z Decimel f
    0 0 0 0 0
    0 0 1 1 1
    0 1 0 2 0
    0 1 1 3 1
    1 0 0 4 0
    1 0 1 5 1
    1 1 0 6 0
    1 1 1 7 1
    • If $x=0$, we write $\bar x$, otherwise we write $x$.
    • So, SoP ie $f(1) = \bar x \bar y z + \bar x y z + x \bar y z + xyz$
    • We can also write it as $∑m(1,3,5,7)$ or $∑(m$1$+m$3$+m$5$+m$7$)$.

Duality Theorem

To get the dual of any boolean expression, replace:

Source Destination
OR AND
. +
NOT keep as-is
XOR XNOR
NAND NOR
0 1
Variable keep as-is
  • Formulae

  • Complement: Has all properties of the Duality Theorem, and we complement the variables in addition.

    • $A\ <->\ \bar A$
    • $\bar A\ <->\ A$
  • Example 0: $XOR = \bar A B + A \bar B$

    • $(\bar A + B) . (A + \bar B)$
    • $\bar A A + AB + \bar A \bar B + B \bar B$
    • $(AB + \bar A \bar B) = XNOR$ [Duality]
    • $(\bar A \bar B + A B)$ [Complement]
  • Example 1: $(AB \bar C)+(\bar ABC) + (ABC)$

    • $(A+B+ \bar C).(\bar A + B+C).(A+B+C)$ [Duality]
    • $(\bar A + \bar B + C).(A + \bar B + \bar C).(\bar A + \bar B + \bar C)$ [Complement]
  • Example 2: $(XYZ)+(\bar X Y \bar Z)+(\bar Y Z) = 1$

    • $(X+Y+Z).(\bar X + Y + \bar Z).(\bar Y + Z) = 0$ [Duality]
    • $(\bar X+ \bar Y + \bar Z).(X + \bar Y + Z).(Y + \bar Z) = 0$ [Complement]
  • Example 3, demonstrating self-dual equation: $XY+YZ+XZ)$

    • $(X+Y).(Y+Z).(X+Z)$
    • $(XY+XZ+Y+YZ).(X+Z)$ # Y.Y can be written as Y
    • $(Y[X+1+YZ]+XZ).(X+Z)$
    • $(Y+XZ)(X+Z)$ # 1 added with anything will result in 1, so X+1+YZ is resolved to 1.
    • $XY+YZ+XZ+XZ$ # XXZ=XZ & XZZ=XZ
    • $XY+YZ+XZ$ # XZ+XZ=XZ
    • This kind of equation is called a self-dual equation. In other words, the output is the same as input in such an equation.
  • Example 4: How many self-dual functions can be made with 1 variable?

    • Total number of combinations: 2, ie A can be either 0 or 1
    • Total number of Boolean functions: 4, ie $0,1, A$ or $\bar A$
    • Total number of self-dual functions: 2 (out of $0,A,\bar A,1$, only $A, \bar A$ are self-dual)
      A $f_1$ $f_2$ $f_3$ $f_4$
      0 0 0 1 1
      1 0 1 0 1
      Result 0 $A$ $\bar A$ 1
  • Example 5: How many self-dual functions can be made with 2 variables?

    • Total number of combinations: 4, ie A can be either 0 or 1 & B can also be either 0 or 1
    • Total number of Boolean functions: 16.
    • Total number of self-dual functions: 4, ie only $A, \bar A, B, \bar B$ are self-dual out of all functions.
      A B $f_1$ $f_2$ $f_3$ $f_4$ $f_5$ $f_6$ $f_7$ $f_8$ $f_9$ $f_{10}$ $f_{11}$ $f_{12}$ $f_{13}$ $f_{14}$ $f_{15}$ $f_{16}$
      0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
      0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
      1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
      1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

K-Map

  • aka Karnaugh Map

  • A K-Map is used to graphically represent & minimize boolean expressions.

  • For a boolean expression of n variables, number of cells needed in K-Map is $2^{n}$.

  • K-Map is based on Grey code (unit distance code). We can't change more than 1 bit in a single step.

  • Prime Implicants: Min-terms which have a 1 in them.

  • Essential Prime Implicants: Min-terms which have a 1 in them, which is also not shared with other pairs.

  • There are 3 types of input values, 0, 1, d,x (don't care).

  • Steps:

    1. We generate the K-Map.
    2. We find the pairs. They contain 1 mandatorily. We may take d ie don't care if needed, otherwise we ignore them. While pairing elements, we first try to find the biggest pair possible (16 elements in a K-Map of 16 elements). Then, we gradually decrease the pair size.
    3. We find the min-terms. Min-terms consist of variables which are same/common for all elements of the pair.
  • Example: Generate a K-Map for $(A,B,C)$ & $(A,B,C,D)$

    • Detailed versions (the cell values denote the decimel representation of the positions):

      • 2 variables, $AB$:

        $↓A\ |\ B→$ $\bar B_{(0)}$ $B_{(1)}$
        $\bar A_{(0)}$ $0_{(00)}$ $1_{(01)}$
        $A_{(1)}$ $2_{(10)}$ $3_{(11)}$
      • 3 variables, $ABC$:

        $↓A\ |\ BC→$ $\bar B \bar C_{(00)}$ $\bar B C_{(01)}$ $B C_{(11)}$ $B \bar C_{(10)}$
        $\bar A_{(0)}$ $0_{(000)}$ $1_{(001)}$ $3_{(011)}$ $2_{(010)}$
        $A_{(1)}$ $4_{(100)}$ $5_{(101)}$ $7_{(111)}$ $6_{(110)}$
      • 4 variables, $ABCD$:

        $↓AB\ |\ CD→$ $\bar C \bar D_{(00)}$ $\bar C D_{(01)}$ $C D_{(11)}$ $C \bar D_{(10)}$
        $\bar A \bar B_{(00)}$ $0_{(0000)}$ $1_{(0001)}$ $3_{(0011)}$ $2_{(0010)}$
        $\bar A B_{(01)}$ $4_{(0100)}$ $5_{(0101)}$ $7_{(0111)}$ $6_{(0110)}$
        $AB_{(11)}$ $12_{(1100)}$ $13_{(1101)}$ $15_{(1111)}$ $14_{(1110)}$
        $A \bar B_{(10)}$ $8_{(1000)}$ $9_{(1001)}$ $11_{(1011)}$ $10_{(1010)}$
    • Simplified versions & templates:

      • 2 variables, $AB$:

        $↓A\ |\ B→$ $\bar B$ $B$
        $\bar A$ $null_{(0)}$ $null_{(1)}$
        $A$ $null_{(2)}$ $null_{(3)}$
      • 3 variables, $ABC$:

        $↓A\ |\ BC→$ $\bar B \bar C$ $\bar B C$ $B C$ $B \bar C$
        $\bar A$ $null_{(0)}$ $null_{(1)}$ $null_{(3)}$ $null_{(2)}$
        $A$ $null_{(4)}$ $null_{(5)}$ $null_{(7)}$ $null_{(6)}$
      • 4 variables, $ABCD$:

        $↓AB\ |\ CD→$ $\bar C \bar D_{(00)}$ $\bar C D_{(01)}$ $C D_{(11)}$ $C \bar D_{(10)}$
        $\bar A \bar B_{(00)}$ $null_{(0)}$ $null_{(1)}$ $null_{(3)}$ $null_{(2)}$
        $\bar A B_{(01)}$ $null_{(4)}$ $null_{(5)}$ $null_{(7)}$ $null_{(6)}$
        $AB_{(11)}$ $null_{(12)}$ $null_{(13)}$ $null_{(15)}$ $null_{(14)}$
        $A \bar B_{(10)}$ $null_{(8)}$ $null_{(9)}$ $null_{(11)}$ $null_{(10)}$
  • Example 1: $f(A,B)=\sum (2,3)$

    • Method 1, by directly solving the equation:
      A B $f$
      0 0 0
      0 1 0
      1 0 1
      1 1 1
      • As per the question, $f=1$ for index 2 & 3 (within 0-3).
      • The resultant equation is: $A \bar B + A B = A(\bar B + B) = A.1 = A$
    • Method 2, using K-Map:
      null $\bar B$ $B$
      $\bar A$ $0_{(0)}$ $0_{(1)}$
      $A$ $1_{(2)}$ $1_{(3)}$
      • Pairs: (2) & (3). Output: $A$
  • Example 2: $\sum m(0,2,5,7,9,11)+d(3,8,10,12,14)$

    $↓PQ\ |\ RS→$ $\bar R \bar S_{(00)}$ $\bar R S_{(01)}$ $R S_{(11)}$ $R \bar S_{(10)}$
    $\bar P \bar Q_{(00)}$ $1_{(0)}$ $null_{(1)}$ $d_{(3)}$ $1_{(2)}$
    $\bar P Q_{(01)}$ $null_{(4)}$ $1_{(5)}$ $1_{(7)}$ $null_{(6)}$
    $PQ_{(11)}$ $d_{(12)}$ $null_{(13)}$ $null_{(15)}$ $d_{(14)}$
    $P \bar Q_{(10)}$ $d_{(8)}$ $1_{(9)}$ $1_{(11)}$ $d_{(10)}$
    • Pairs: ${8,9,11,10},{0,2,8,10},{5,7}$
    • Min-Terms: 4 ie $P \bar Q, \bar Q \bar S, \bar P Q S, \bar P \bar Q \bar S$
    • Essential Prime Implicants: 3 ie $P \bar Q, \bar Q \bar S,\bar P Q S$
  • Example 3: $\sum m(5,11,13,14,15)$

    $↓AB\ |\ CD→$ $\bar C \bar D_{(00)}$ $\bar C D_{(01)}$ $C D_{(11)}$ $C \bar D_{(10)}$
    $\bar A \bar B_{(00)}$ $null_{(0)}$ $null_{(1)}$ $null_{(3)}$ $null_{(2)}$
    $\bar A B_{(01)}$ $null_{(4)}$ $1_{(5)}$ $null_{(7)}$ $null_{(6)}$
    $AB_{(11)}$ $null_{(12)}$ $1_{(13)}$ $1_{(15)}$ $1_{(14)}$
    $A \bar B_{(10)}$ $null_{(8)}$ $null_{(9)}$ $1_{(11)}$ $null_{(10)}$
    • Pairs: ${5,13},{13,15},{15,14},{15,11}$
    • Prime Implicants: 4 ie $B \bar C D, ABD, ABC, ACD$
    • Essential Prime Implicants: 3 ie $B \bar C D, ABC, ACD$

Logic Circuits

Half-Adder

  • Adds 2 bits
  • Inputs: 2 | Outputs: 2
  • Sum (Least Significant Bit [LSB]): $x⊕y$
  • Carry (Most Significant Bit [MSB]): $xy$
  • Truth Table:
    X Y Sum Carry
    0 0 0 0
    0 1 1 0
    1 0 1 0
    1 1 0 1
  • Min-terms:
    • Sum: $\bar x y, x \bar y=x⊕y$ (In K-Map, diagonals are filled with 1)
    • Carry: $xy$
  • Circuit Diagram:
    • Sum: $\bar x y + x \bar y$ | Carry: $xy$ Half-adder 0
    • Sum: $x⊕y$ | Carry: $xy$ Half-adder 1

Full-Adder

  • Adds 3 bits
  • Inputs: 3 | Outputs: 2
  • 2 Half-Adders = Full-Adder
  • Sum: $x⊕y⊕z$
  • Carry: $xy+yz+zx=(x⊕y)z+xy$
  • Truth Table:
    x y z($c_{in})$ sum $c_{out}$
    0 0 0 0 0
    0 0 1 1 0
    0 1 0 1 0
    0 1 1 0 1
    1 0 0 1 0
    1 0 1 0 1
    1 1 0 0 1
    1 1 1 1 1
  • Min-Terms:
    • Sum: $\sum{(m_1,m_2,m_4,m_7)} = x⊕y⊕z$
      $↓x\ |\ yz→$ $\bar y \bar z$ $\bar y z$ $y z$ $y \bar z$
      $\bar x$ $null_{(0)}$ $1_{(1)}$ $null_{(3)}$ $1_{(2)}$
      $x$ $1_{(4)}$ $null_{(5)}$ $1_{(7)}$ $null_{(6)}$
      • Diagonals are filled with 1.
    • Carry: $\sum{(m_3,m_5,m_6,m_7)}= xy+yz+xz=(x⊕y)z+xy$
      $↓x\ |\ yz→$ $\bar y \bar z$ $\bar y z$ $y z$ $y \bar z$
      $\bar x$ $null_{(0)}$ $null_{(1)}$ $1_{(3)}$ $null_{(2)}$
      $x$ $null_{(4)}$ $1_{(5)}$ $1_{(7)}$ $1_{(6)}$
      • Pairs: $y z,xz,xy=xy+yz+xz$
  • Circuit Diagram:
    • Sum: $x⊕y⊕z$ | Carry: $(x⊕y)z+xy$ Full-adder 0

Half-Subtractor

  • Subtracts 2 bits

  • Inputs: 2 | Outputs: 2

  • Subtraction (Least Significant Bit [LSB]): $x⊕y$

  • Borrow (Most Significant Bit [MSB]): $\bar xy$

  • Truth Table:

    x y sub $b_{out}$
    0 0 0 0
    0 1 1 1
    1 0 1 0
    1 1 0 0
  • When subtracting $1$ from $0$, first we have to borrow $1$. So, $0$ becomes $10$, and $10-1=1$, with borrow $1$.

  • Min-terms:

    • Sub: $\bar x y, x \bar y=x⊕y$
    • Borrow: $\bar xy$
  • Circuit Diagram:

    • Sub: $x⊕y$ | Borrow: $\bar xy$ Haf-subtractor 0

Full-Subtractor

  • Subtracts 3 bits
  • Inputs: 3 | Outputs: 2
  • Sub: $x⊕y⊕z$
  • Borrow: $\bar x y + yz + \bar xz$
  • Truth Table:
    x y z($c_{in})$ sub $c_{out}$
    0 0 0 0 0
    0 0 1 1 0
    0 1 0 1 0
    0 1 1 0 1
    1 0 0 1 0
    1 0 1 0 1
    1 1 0 0 1
    1 1 1 1 1
  • Min-Terms:
    • Sub: $\sum{(m_1,m_2,m_4,m_7)} = x⊕y⊕z$
      $↓x\ |\ yz→$ $\bar y \bar z$ $\bar y z$ $y z$ $y \bar z$
      $\bar x$ $null_{(0)}$ $1_{(1)}$ $null_{(3)}$ $1_{(2)}$
      $x$ $1_{(4)}$ $null_{(5)}$ $1_{(7)}$ $null_{(6)}$
      • Diagonals are filled with 1.
    • Borrow: $\sum{(m_1,m_3,m_2,m_7)}=\bar xz+ \bar x y + yz$
      $↓x\ |\ yz→$ $\bar y \bar z$ $\bar y z$ $y z$ $y \bar z$
      $\bar x$ $null_{(0)}$ $1_{(1)}$ $1_{(3)}$ $1_{(2)}$
      $x$ $null_{(4)}$ $null_{(5)}$ $1_{(7)}$ $null_{(6)}$
      • Pairs: $\bar xz, \bar x y, yz$
  • Circuit Diagram:
    • Sub: $x⊕y⊕z$ | Borrow: $\bar xz+ \bar x y + yz$ Full-subtractor 0

Combinational Logic Circuits

Multiplexer

  • It is a Combinational circuit that has $n$ input lines and $1$ output line.
  • It is an electronic switch that connects 1 of the n inputs to an output.
  • Select lines are used to select the input. If the number of inputs is $n$ and ($n=2^k$), the number of select lines will be $k$.
  • Multiplexers are functionally complete, which means we can design any circuit using them.
    • We will prove that we can make AND, OR, and NOT gates using Multiplexers. If we can make these basic gates, we can also make NAND & NOR gates after this, which are Universal Gates.
    • We will use a 2:1 Multiplexer for proving this.
    • Inputs: $A$,$B$
    • AND Gate:
      1. Truth Table of AND Gate:
        A B O/P
        0 0 0
        0 1 0
        1 0 0
        1 1 1
      2. Min-Terms: $f=AB$
      3. Let's give B as select-line.
        $B$ Value Input
        $\bar B$ $0$ $I_1$
        $B$ $1$ $I_2$
      4. $I_1=0$, because $0 . B =0$
      5. $I_2=A$, because $A . B = AB$
      6. Result: $0 \bar B + A B = AB$
    • OR Gate:
      1. Truth Table of OR Gate:
        A B O/P
        0 0 0
        0 1 1
        1 0 1
        1 1 1
      2. Min-Terms: $f=B + A \bar B$
        • $\bar A B + A \bar B + A B$
        • $B(\bar A + A) + A \bar B$
        • $B + A \bar B$ // check formula
      3. Let's give B as select-line.
        $B$ Value Input
        $\bar B$ $0$ $I_1$
        $B$ $1$ $I_2$
      4. $I_1=A$, because $A . \bar B = A \bar B$
      5. $I_2=1$, because $1 . B = B$
      6. Result: $\bar A B + B$
    • NOT Gate:
      1. Truth Table of NOT Gate:
        A O/P
        0 1
        1 0
      2. Let's give A as select-line.
        $A$ Value Input
        $\bar A$ $0$ $I_1$
        $A$ $1$ $I_2$
      3. We just need to invert the Inputs.
      4. $I_1=1$, because $A . 1 = 1$
      5. $I_2=0$, because $A . 0 = 0$

4:1 Multiplexer

  • Inputs: $4$ | Outputs: $1$ | Select-Lines: $2$ (because $4=2^2$)
  • Truth-Table (Select Lines):
    $S_1$ $S_0$ $I_0$ $I_1$ $I_2$ $I_3$
    0 0 I 0 0 0
    0 1 0 I 0 0
    1 0 0 0 I 0
    1 1 0 0 0 I
  • SoP: $\bar S_1 \bar S_0 I_1 + \bar S_1 S_0 I_2 + S_1 \bar S_0 I_3 + S_1 S_0 I_4$
  • Logic Diagram:
    • Select Lines: $A$, $B$
    • Inputs: $D_0$, $D_1$, $D_2$, $D_3$
    • Output: $Y$
      4:1 Multiplexer Logic Diagram
      Image taken from here

Cascading Multiplexer

  • Multiplexers are connected in a way such that the output of 1 Multiplexer becomes one of the inputs of the next Multiplexer.
  • Example 0:
    Cascading Multiplexer 0
    • Output of Multiplexer 1: $x \bar z + \bar y z$
    • Output of Multiplexer 2: $f=(x \bar z + \bar y z)\bar y + xy$
      • $x \bar y \bar z + \bar y z + x y$
      • $x(\bar y \bar z + y) + \bar y z$
      • $x((y + \bar y)(y + \bar z)) + \bar y z$ // Distributive Property
      • $x(y + \bar z) + \bar y z$ // $(y + \bar y) = 1$

      $f=x y + x \bar z + \bar y z$

Implementing Functions using Multiplexer:

  • Our objective is to implement the given function in the Multiplexer, to get the same output as that of the function.
  • Example 0:

    $f(A,B,C)=\sum {(1,2,5,7)}$

    • Select Lines: A B

    • Inputs: Some variant of C

    • Min-Terms: $\bar A \bar B C + \bar A B \bar C + A \bar B C + A B C$

    • Match A & B with the select lines, $S_1$ & $S_0$.

      Since $\bar A \bar B$ matches with $\bar S_1 \bar S_2$, Input $I_1=C$.

      $S_1$ $S_0$ Min-Term Input
      0 0 $\bar A \bar B$ $C$
      0 1 $\bar A B$ $\bar C$
      1 0 $A \bar B$ $C$
      1 1 $A B$ $C$

Examples

  • Example 0:
    Multiplexer Question 0
    • Multiplexer I:
      • Inputs: $X$, $\bar Y$
      • Select Line: $Z$
      • Output: $X \bar Z + \bar YZ$

        Z: 0, $X \bar Z$
        Z: 1, $\bar Y Z$

      • This output is Input $I_1$ for Multiplexer II.
    • Multiplexer II:
      • Inputs: $X \bar Z + \bar Y Z$, $X$
      • Select Line: $Y$
      • Output: $(X \bar Z + \bar Y Z)\bar Y + XY$

        Z: 0, $(X \bar Z + \bar Y Z)\bar Y$
        Z: 1, $XY$

    • Minimizing the output:
      • $(X \bar Z + YZ)\bar Y + XY$
      • $X \bar Y \bar Z + \bar Y Z + XY$ // $\bar Y + \bar Y = \bar Y$
      • $X(Y + \bar Y \bar Z)+ \bar Y Z$
      • $X[(Y+ \bar Y)(Y + \bar Z)] + \bar Y Z$ // Distributive Property
      • $X (Y + \bar Z) + \bar Y Z$
      • $X Y + X \bar Z + \bar Y Z$

De-Multiplexer

  • It is a Combinational circuit that has $1$ input line and $n$ output line.
  • It is an electronic switch that connects the input to one of the n outputs.
  • Select lines are used to select the output where the input will be sent. If the number of outputs is $n$ and ($n=2^k$), the number of select lines will be $k$.

1:4 De-multiplexer

  • Inputs: $1$ | Outputs: $4$ | Select-Lines: $2$ (because $4=2^2$)
  • Truth-Table (Select Lines):
    $S_1$ $S_0$ $O_0$ $O_1$ $O_2$ $O_3$
    0 0 I 0 0 0
    0 1 0 I 0 0
    1 0 0 0 I 0
    1 1 0 0 0 I
  • SoP: $\bar S_1 \bar S_0 O_1,\ \bar S_1 S_0 O_2 ,\ S_1 \bar S_0 O_3,\ S_1 S_0 O_4$
  • Logic Diagram:
    • Select Lines: $S_1$, $S_0$
    • Inputs: $D$
    • Output: $Y_0$, $Y_1$, $Y_2$, $Y_3$
      1:4 De-multiplexer Logic Diagram
      Image taken from here

Decoder

  • It is a multi-input multi-output device.
  • Inputs: $n$ | Outputs: upto $2^n$
  • Applications:
    • Binary to Octal (3:8)
    • Binary to Hexadecimel (4:16)
    • Binary to Decimel (4:10)
  • Truth-Table (3:8 Decoder):
    X Y Z $D_0$ $D_1$ $D_2$ $D_3$ $D_4$ $D_5$ $D_6$ $D_7$
    0 0 0 1 0 0 0 0 0 0 0
    0 0 1 0 1 0 0 0 0 0 0
    0 1 0 0 0 1 0 0 0 0 0
    0 1 1 0 0 0 1 0 0 0 0
    1 0 0 0 0 0 0 1 0 0 0
    1 0 1 0 0 0 0 0 1 0 0
    1 1 0 0 0 0 0 0 0 1 0
    1 1 1 0 0 0 0 0 0 0 1
  • SoP: $\bar X \bar Y \bar Z D_0 + \bar X \bar Y Z D_1 + \bar X Y \bar Z D_2 + \bar X Y Z D_3 + X \bar Y \bar Z D_4 + X \bar Y Z D_5 + X Y \bar Z D_6 + X Y Z D_7$

Encoder

  • It is a multi-input multi-output device.
  • Inputs: $2^n$ | Outputs: upto $n$
  • Applications:
    • Octal to Binary (8:3)
    • Hexadecimel to Binary (16:4)
    • Decimel to Binary (10:4)
  • Truth-Table (8:3 Encoder):
    $E_0$ $E_1$ $E_2$ $E_3$ $E_4$ $E_5$ $E_6$ $E_7$ X Y Z
    1 0 0 0 0 0 0 0 0 0 0
    0 1 0 0 0 0 0 0 0 0 1
    0 0 1 0 0 0 0 0 0 1 0
    0 0 0 1 0 0 0 0 0 1 1
    0 0 0 0 1 0 0 0 1 0 0
    0 0 0 0 0 1 0 0 1 0 1
    0 0 0 0 0 0 1 0 1 1 0
    0 0 0 0 0 0 0 1 1 1 1
  • SoP: $\bar X \bar Y \bar Z E_0 + \bar X \bar Y Z E_1 + \bar X Y \bar Z E_2 + \bar X Y Z E_3 + X \bar Y \bar Z E_4 + X \bar Y Z E_5 + X Y \bar Z E_6 + X Y Z E_7$

Priority Encoder

  • Example, Inputs: $4=2^2$ and Output: $2$
  • V: Valid
  • Truth Table:
    $I_3$ $I_2$ $I_1$ $I_0$ $O_1$ $O_0$ $V$
    0 0 0 0 x x 0
    0 0 0 1 0 0 1
    0 0 1 0 0 1 1
    0 1 0 0 1 0 1
    1 0 0 0 1 1 1
  • In this type of encoder, there's no output ($V=0$), if all the inputs are $0$.
  • For a normal encoder, the output is the same for inputs $0,0,0,0$ & $1,0,0,0$ ie $I_3=1$, while the rest are 0. So, in a Priority encoder, we have an extra output $V$, and the outputs are valid only when $V=1$.
  • If 2 inputs become 1, no problems arise because the inputs are considered based on priority. Assuming that $I_3>I_2>I_1>I_0$, if $I_2=1$ & $I_1=1$, only $I_2$ will be considered.

Sequential Circuits

  • Consists of a memory element that stores the present output.
  • Output not only depends on the input, but also on the previous output.
  • Inputs: $I$ (Input) | $Q_n$ (Present output)
  • Output: $Q_{n+1}$ (Next Output)

SR Latch

  • For Latches, the output depends on the Gate used to design it.

Using NAND Gate

  • Inputs: $S$ (Set), $R$ (Reset) | Outputs: $Q_{n+1} / Q$, $\bar Q$
  • Property of NAND Gate: If any 1 of the inputs is 0, output is 1.
  • Truth-Table:
    $S$ $R$ $Q_{n+1}$ ($Q$)
    0 0 Invalid
    0 1 1
    1 0 0
    1 1 Hold / Q
  • Inputs: $S=0$, $R=0$ | Outputs: $Q=1$, $\bar Q=1$
    • NAND Gate (I) will output 1, since one of the inputs is 0.
    • NAND Gate (II) will output 1, since one of the inputs is 0.
    • This is invalid since the outputs should've been complimentary to each other.
    • Circuit-Diagram:
      SR Latch 0,1
  • Inputs: $S=0$, $R=1$ | Outputs: $Q=1$, $\bar Q=0$
    • NAND Gate (I) will output 1, since one of the inputs is 0.
    • NAND Gate (II) will output 0, since both the inputs are 1.
    • Circuit-Diagram:
      SR Latch 0,1
  • Inputs: $S=1$, $R=0$ | Outputs: $Q=0$, $\bar Q=1$
    • NAND Gate (II) will output 1, since one of the inputs is 0.
    • NAND Gate (I) will output 0, since both the inputs are 1.
    • Circuit-Diagram:
      SR Latch 0,1
  • Inputs: $S=1$, $R=1$ | Outputs: $Q=Q$, $\bar Q=\bar Q$
    • Circuit-Diagram:
      SR Latch 1,1
    1. NAND Gate (II) will always output $\bar Q$, which will be taken as an input to NAND Gate (I).
    2. Also, NAND Gate (I) will always output $Q$, which will be taken as an input to NAND Gate (II).
    3. So, for NAND Gate (I), output:
      • $\bar {(1.\bar Q)}$
      • $\bar 1 . \bar {\bar Q}$
      • $0+Q$
      • $Q$
    4. Also, for NAND Gate (II), output:
      • $\bar {1.Q}$
      • $\bar 1 . \bar Q$
      • $0 + \bar Q$
      • $\bar Q$

Using NOR Gate

  • Inputs: $S$ (Set), $R$ (Reset) | Outputs: $Q_{n+1} / Q$, $\bar Q$
  • Property of NOR Gate: If any 1 of the inputs is 1, output is 0.
  • Truth-Table:
    $S$ $R$ $Q_{n+1}$ ($Q$)
    0 0 Hold / Q
    0 1 0
    1 0 1
    1 1 Invalid
  • Inputs: $S=0$, $R=0$ | Outputs: $Q=Q$, $\bar Q=\bar Q$
    • Circuit-Diagram:
      SR Latch 0,0
    1. NOR Gate (II) will always output $Q$, which will be taken as an input to NOR Gate (I).
    2. Also, NOR Gate (I) will always output $\bar Q$, which will be taken as an input to NOR Gate (II).
    3. So, for NOR Gate (II), output:
      • $\bar {0+\bar Q}$
      • $\bar 0.\bar {\bar Q}$
      • $1.Q$
      • $Q$
    4. Also, for NAND Gate (I), output:
      • $\bar {0+Q}$
      • $\bar 0. \bar Q$
      • $1.\bar Q$
      • $\bar Q$
  • Inputs: $S=0$, $R=1$ | Outputs: $Q=0$, $\bar Q=1$
    • NOR Gate (II) will output 0, since one of the inputs is 1.
    • NOR Gate (I) will output 1, since both the inputs are 0.
    • Circuit-Diagram:
      SR Latch 0,1
  • Inputs: $S=1$, $R=0$ | Outputs: $Q=1$, $\bar Q=0$
    • NOR Gate (I) will output 0, since one of the inputs is 1.
    • NOR Gate (II) will output 1, since both the inputs are 0.
    • Circuit-Diagram:
      SR Latch 1,0
  • Inputs: $S=1$, $R=1$ | Outputs: $Q=0$, $\bar Q=0$
    • NAND Gate (I) will output 0, since one of the inputs is 1.
    • NAND Gate (II) will output 0, since one of the inputs is 1.
    • This is invalid since the outputs should've been complimentary to each other.
    • Circuit-Diagram:
      SR Latch 1,1

Flip-Flop

SR Flip-Flop

  • A Flip-Flop only works when the Clock is triggered.
  • The SR Flip-Flop is the most basic version of Flip-Flops, all other Flip-Flops are designed from it.
  • For Flip-Flops, the output is same regardless of the Gate used to design it.
  • Flip-Flops also have 2 more pins, clear and preset.
    • Clear: Force 0 as output.
    • Preset: Force 1 as output.
    • Low / High enabled flip-flop: The pins get enabled when the input for Clear/Preset is low/high.
    • Notation:
      Flip-Flop Set, Preset Notation

Using NAND Gate

  • Inputs: $S$, $R$ | Outputs: $Q_{n}$, $\bar Q_n$
  • Property of NAND Gate: If any 1 of the inputs is 0, output is 1.
  • When the Clock is triggered, value 1 is passed to both NAND Gates.
  • Truth-Table:
    $CLK$ $S$ $R$ $Q_{n}$
    0 Any Any Q / Hold
    1 0 0 Q / Hold
    1 0 1 0 / Reset
    1 1 0 1 / Set
    1 1 1 Invalid
  • Inputs: $S=0$, $R=0$ | Outputs: $Q_n=Q$, $\bar Q_n=\bar Q$
    • Circuit-Diagram:
      SR Flip-Flop 0,0
  • Inputs: $S=0$, $R=1$ | Outputs: $Q_n=0$, $\bar Q_n=1$
    • Circuit-Diagram:
      SR Flip-Flop 0,1
  • Inputs: $S=1$, $R=0$ | Outputs: $Q_n=1$, $\bar Q_n=0$
    • Circuit-Diagram:
      SR Flip-Flop 1,0
  • Inputs: $S=1$, $R=1$ | Outputs: $Q_n=1$, $\bar Q_n=1$
    • Circuit-Diagram:
      SR Flip-Flop 1,1

Using NOR Gate

  • We use AND Gate instead of NOR Gate, as inputs to the Latch. This is because, if we use NOR Gates, they'll always output 0 when the clock is triggered (Property of NOR Gate: If any 1 of the inputs is 1, output is 0). So the Flip-Flop will not work properly.
  • When the Clock is triggered, value 1 is passed to both NOR Gates.
  • Truth-Table:
    $CLK$ $S$ $R$ $Q_n$
    0 Any Any Q / Hold
    1 0 0 Q / Hold
    1 0 1 0 / Reset
    1 1 0 1 / Set
    1 1 1 0 / Invalid
  • Inputs: $S=0$, $R=0$ | Outputs: $Q_n=Q$, $\bar Q_n=\bar Q$
    • Circuit-Diagram:
      SR Flip-Flop 0,0
  • Inputs: $S=0$, $R=1$ | Outputs: $Q_n=0$, $\bar Q_n=1$
    • Circuit-Diagram:
      SR Flip-Flop 0,1
  • Inputs: $S=1$, $R=0$ | Outputs: $Q_n=1$, $\bar Q_n=0$
    • Circuit-Diagram:
      SR Flip-Flop 1,0
  • Inputs: $S=1$, $R=1$ | Outputs: $Q_n=0$, $\bar Q_n=0$
    • Circuit-Diagram:
      SR Flip-Flop 1,1

Characteristic & Excitation Table

  • SR Flip-Flop Truth-Table:
    $CLK$ $S$ $R$ $Q_n$
    0 Any Any Hold
    1 0 0 Q / Hold
    1 0 1 0 / Reset
    1 1 0 1 / Set
    1 1 1 0 / Invalid
  • Characteristic Table:
    • Inputs: 3 {$S$,$R$,$Q_n$} | Outputs: 1, {$Q_{n+1}$}
    • Corresponds to:
      • If $Q_n$ is in Hold state, $Q_{n+1}$ will be same as $Q_n$
      • If $Q_n$ is in Reset state, $Q_{n+1}$ will $0$ regardless of the value of $Q_n$
      • If $Q_n$ is in Set state, $Q_{n+1}$ will $1$ regardless of the value of $Q_n$
      • If $Q_n$ is in invalid state, $Q_{n+1}$ will also be invalid.
    • Truth-Table (x: don't care):
      $S$ $R$ $Q_n$ $Q_{n+1}$ Corresponds to
      0 0 0 0 Hold
      0 0 1 1 Hold
      0 1 0 0 Reset
      0 1 1 0 Reset
      1 0 0 1 Set
      1 0 1 1 Set
      1 1 0 x Invalid
      1 1 1 x Invalid
    • SoP (based on $Q_{n+1}$): $\bar S \bar R Q_{n} + S \bar R \bar Q_{n} + S \bar R Q_{n} + S R \bar Q_{n} + S R Q_{n}$
    • K-Map:
      $↓S\ |\ R {Q_n}→$ $\bar R \bar {Q_n}_{(00)}$ $\bar R {Q_n}_{(01)}$ $R {Q_n}_{(11)}$ $R \bar {Q_n}_{(10)}$
      $\bar S_{(0)}$ $null_{(0)}$ $1_{(1)}$ $null_{(3)}$ $null_{(2)}$
      $S_{(1)}$ $1_{(4)}$ $1_{(5)}$ $d_{(7)}$ $d_{(6)}$
      • Pairs: ${1,5},{4,5,7,6}$
      • Min-Terms: 2 ie $S + \bar R Q_{n}$
  • Excitation Table:
    • Represents corresponding inputs to outputs $Q_n$ & $Q_{n+1}$
    • Prerequisite: Characteristic Table
    • Truth-Table (x: don't care / cannot be determined):
      $Q_n$ $Q_{n+1}$ $S$ $R$
      0 0 0 x
      0 1 1 0
      1 0 0 1
      1 1 x 0

JK Flip-Flop

Using NAND Gate


JK Flip-Flop

  • Inputs: $J$, $K$ | Outputs: $Q_{n}$, $\bar Q_n$
  • Property of NAND Gate: If any 1 of the inputs is 0, output is 1.
  • When the Clock is triggered, value 1 is passed to both NAND Gates.
  • Truth-Table:
    $CLK$ $S$ $R$ $Q_{n+1}$ ($Q$)
    0 Any Any Q / Hold
    1 0 0 Q / Hold
    1 0 1 0 / Reset
    1 1 0 1 / Set
    1 1 0/1 Toggle
  • Inputs: $J=0$, $K=0$ | Outputs: $Q_n=Q$, $\bar Q_n=\bar Q$
  • Inputs: $J=0$, $K=1$ | Outputs: $Q_n=0$, $\bar Q_n=1$
  • Inputs: $K=1$, $K=0$ | Outputs: $Q_n=1$, $\bar Q_n=0$
  • Inputs: $J=1$, $K=1$ | Outputs if $Q_n=1$, $\bar Q_n=0$ are $Q_{n+1}=0$, $\bar Q_{n+1}=1$
    • Let $Q_n=1$, then $\bar Q_{n}=0$.
    • $Q_{n}=1$ goes as input to NAND Gate $K$. It outputs $1$
    • $\bar Q_n=0$ goes as input to NAND Gate $J$. It outputs $0$.
    • The SR Latch gets input $1,0$ and outputs $Q_{n+1}=0$, $\bar Q_{n+1}=1$.
      JK Flip-Flop 1,1 1
  • Inputs: $J=1$, $K=1$ | Outputs if $Q_n=0$, $\bar Q_n=1$ are $Q_{n+1}=1$, $\bar Q_{n+1}=0$
    • Let $Q_n=0$, then $\bar Q_{n}=1$.
    • $Q_{n}=0$ goes as input to NAND Gate $J$. It outputs $0$
    • $\bar Q_n=1$ goes as input to NAND Gate $K$. It outputs $1$.
    • The SR Latch gets input $0,1$ and outputs $Q_{n+1}=1$, $\bar Q_{n+1}=0$.
      JK Flip-Flop 1,1 0

Characteristic & Excitation Table

  • SR Flip-Flop Truth-Table:
    $CLK$ $S$ $R$ $Q_n$
    0 Any Any Q / Hold
    1 0 0 Q / Hold
    1 0 1 0 / Reset
    1 1 0 1 / Set
    1 1 1 Toggle
  • Characteristic Table:
    • Inputs: 3 {$J$,$K$,$Q_n$} | Outputs: 1, {$Q_{n+1}$}
    • Corresponds to:
      • If $Q_n$ is in Hold state, $Q_{n+1}$ will be same as $Q_n$
      • If $Q_n$ is in Reset state, $Q_{n+1}$ will $0$ regardless of the value of $Q_n$
      • If $Q_n$ is in Set state, $Q_{n+1}$ will $1$ regardless of the value of $Q_n$
      • If $Q_n$ is in Toggle state, $Q_{n+1}$ will be the opposite of $Q_n$.
    • Truth-Table:
      $J$ $K$ $Q_n$ $Q_{n+1}$ Corresponds to
      0 0 0 0 Hold
      0 0 1 1 Hold
      0 1 0 0 Reset
      0 1 1 0 Reset
      1 0 0 1 Set
      1 0 1 1 Set
      1 1 0 1 Toggle
      1 1 1 0 Toggle
    • SoP: $\bar J \bar K Q_{n} + J \bar K \bar Q_n + J \bar K Q_n + J K \bar Q_n$
    • K-Map:
      $↓J\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
      $\bar J_{(0)}$ $null_{(0)}$ $1_{(1)}$ $null_{(3)}$ $null_{(2)}$
      $J_{(1)}$ $1_{(4)}$ $1_{(5)}$ $null_{(7)}$ $1_{(6)}$
      • Pairs: ${1,5},{4,6}$
      • Min-Terms: 2 ie $\bar K Q_n + J \bar Q_{n}$
  • Excitation Table:
    • Represents corresponding inputs to outputs $Q_n$ & $Q_{n+1}$
    • Prerequisite: Characteristic Table
    • Truth-Table (x: cannot be determined):
      $Q_n$ $Q_{n+1}$ $J$ $K$
      0 0 0 x
      0 1 1 x
      1 0 x 1
      1 1 x 0

Level Trigger & Edge Trigger

  • T: Time duration of 1 clock pulse, consisting of 1 low & 1 high.

  • Level Trigger

    • Low Level Trigger: when $clock=0$
    • High Level Trigger: when $clock=1$
    • $T_w=T/2$
  • Edge Trigger

    • Positive Edge Trigger: When clock switches from $0$ to $1$
    • Negative Edge Trigger: When clock switches from $1$ to $0$
      Level, Edge Trigger
  • Representation:

    • Remember the edge cases in the right-most representation(s).
      Level, Edge Trigger Representation

Race Around Condition

Requirements (all are mandatory):

  1. Level Triggered JK Flip-Flop.
  2. Inputs: $J=1$, $K=1$ (Toggle Mode)
  3. $T_w \gt \gt T_d$

    $T_w$: Time duration that clock stays at a particular state
    $T_d$: Time taken by the Flip-Flop to process the inputs

What happens:

  1. We know that JK Flip-Flop gives next state $Q_n=1$ for current state $Q_n=0$.
  2. If the clock stays at the same state $CLK=1$ for a sufficiently long time ($T_w \gt \gt T_d$), the outputs will get fed back to the Flip-Flop, and toggle the inputs again.
  3. This will keep happening again and again, and we will not be able to figure out the output of the Flip-Flop. This is known as Race Condition.
    JK Flip-Flop Race Condition

Master-Slave JK Flip-Flop

  • This is a solution for Race Around Condition in a JK Flip-Flop.
    JK Flip-Flop Race Condition Solution
  • The feedback from the Slave Flip-Flop goes to the Master Flip-Flop.
  • The clock triggers only the Master Flip-Flop, and not the Slave Flip-Flop.
  • The Master Flip-Flop is giving the desired output, and the Slave Flip-Flop is forwarding it as-is.

D Flip-Flop

  • Inputs: 2: ${D,CLK}$ | Outputs: 2: ${Q_n,\bar Q_n}$
  • Also known as transparent latch or storage device.
  • Truth Table:
    $D$ $Q_{n}$
    0 0
    1 1

Construction using SR Flip-Flop:

  • Input: $D=0$ | Outputs: $Q_n=0$, $\bar Q_n=1$
    • Circuit-diagram:
      D flip-flop 0
  • Input: $D=1$ | Outputs: $Q_n=1$, $\bar Q_n=0$
    • Circuit-diagram:
      D flip-flop 1

Characteristic & Excitation Table

  • Characteristic Table:
    • Inputs: 2 ${D,Q_n}$ | Outputs: 1, ${Q_{n+1}}$
      $D$ $Q_n$ $Q_{n+1}$
      0 0 0
      0 1 0
      1 0 1
      1 1 1
    • Output is same as the input.
  • Excitation Table:
    • Inputs: 2 ${Q_n,Q_{n+1}}$ | Outputs: 1, ${D}$
      $Q_n$ $Q_{n+1}$ D
      0 0 0
      0 1 1
      1 0 0
      1 1 1

T Flip-Flop

  • Inputs: 2: ${T,CLK}$ | Outputs: 2: ${Q_n,\bar Q_n}$
  • If $T=0$, outputs the same value as current input.
  • If $T=1$, outputs the complement of current input.
  • Truth Table:
    $T$ $Q_{n}$
    0 $Q_n$
    1 $\bar Q_n$
  • Input: $T$ | Outputs: $Q_n$, $\bar Q_n$
    • Logic-diagram:
      T flip-flop

Characteristic & Excitation Table

  • Characteristic Table:

    • Inputs: 2 ${Y,Q_n}$ | Outputs: 1, ${Q_{n+1}}$
      $T$ $Q_n$ $Q_{n+1}$
      0 0 0
      0 1 1
      1 0 1
      1 1 0
    • Output: $Q_{n+1}=T⊕Q_n$
  • Excitation Table:

    • Inputs: 2 ${Q_n,Q_{n+1}}$ | Outputs: 1, ${T}$
      $Q_n$ $Q_{n+1}$ T
      0 0 0
      0 1 1
      1 0 1
      1 1 0

Conversion: SR Flip-Flop to D Flip-Flop

  • We need to excite SR Flip-Flop, so it gets the Characteristics of D Flip-Flop.
  • First, we define the Characteristics of D Flip-Flop.
  • Next, we need the Excitation Table of SR Flip-Flop.
  • Merge the Excitation Table of SR Flip-Flop, with the Characteristic Table of D Flip-Flop.
    D $Q_n$ $Q_{n+1}$ $S$ $R$
    0 0 0 0 x
    0 1 0 0 1
    1 0 1 1 0
    1 1 1 x 0
  • Generate K-Map for $S$:
    $↓D\ |\ {Q_n}→$ $\bar {Q_n}_{(00)}$ ${Q_n}_{(01)}$
    $\bar D_{(0)}$ $null_{(0)}$ $null_{(1)}$
    $D_{(1)}$ $1_{(2)}$ $x_{(3)}$
    • Pairs: ${2,3}$
    • Min-Terms: 1 ie $D$
  • Generate K-Map for $R$:
    $↓D\ |\ {Q_n}→$ $\bar {Q_n}_{(00)}$ ${Q_n}_{(01)}$
    $\bar D_{(0)}$ $x_{(0)}$ $1_{(1)}$
    $D_{(1)}$ $null_{(2)}$ $null_{(3)}$
    • Pairs: ${0,1}$
    • Min-Terms: 1 ie $\bar D$
    • Logic-diagram:
      SR Flip-Flop to D Flip-Flop

Conversion: T Flip-Flop to JK Flip-Flop

  • We need to excite T Flip-Flop, so it gets the Characteristics of JK Flip-Flop.
  • First, we define the Characteristics of JK Flip-Flop.
  • Next, we need the Excitation Table of T Flip-Flop.
  • Merge the Excitation Table of T Flip-Flop, with the Characteristic Table of JK Flip-Flop.
    J K $Q_n$ $Q_{n+1}$ T
    0 0 0 0 0
    0 0 1 1 0
    0 1 0 0 0
    0 1 1 0 1
    1 0 0 1 1
    1 0 1 1 0
    1 1 0 1 1
    1 1 1 0 1
  • K-Map for $T$:
    $↓J\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
    $\bar J_{(0)}$ $null_{(0)}$ $null_{(1)}$ $1_{(3)}$ $null_{(2)}$
    $J_{(1)}$ $1_{(4)}$ $null_{(5)}$ $1_{(7)}$ $1_{(6)}$
    • Pairs: ${3,7},{4,6}$
    • Min-Terms: 2 ie $K Q_n + J \bar Q_{n}$
    • Logic-diagram:
      T Flip-Flop to JK Flip-Flop

Conversion: SR Flip-Flop to JK Flip-Flop

  • We need to excite SR Flip-Flop so it gets the Characteristics of JK Flip-Flop.
  • First, we define the Characteristics of JK Flip-Flop.
  • Next, we need the Excitation Table of SR Flip-Flop.
  • Merge the Excitation Table of SR Flip-Flop, with the Characteristic Table of JK Flip-Flop.
    $J$ $K$ $Q_n$ $Q_{n+1}$ $S$ $R$
    0 0 0 0 0 x
    0 0 1 1 x 0
    0 1 0 0 0 x
    0 1 1 0 0 1
    1 0 0 1 1 0
    1 0 1 1 x 0
    1 1 0 1 1 0
    1 1 1 0 0 1
  • K-Map for $S$:
    $↓J\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
    $\bar J_{(0)}$ $null_{(0)}$ $x_{(1)}$ $null_{(3)}$ $null_{(2)}$
    $J_{(1)}$ $1_{(4)}$ $x_{(5)}$ $null_{(7)}$ $1_{(6)}$
    • Pairs: ${4,6}$
    • Min-Terms: 1 ie $J \bar Q_{n}$
  • K-Map for $R$:
    $↓J\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
    $\bar J_{(0)}$ $x_{(0)}$ $null_{(1)}$ $1_{(3)}$ $x_{(2)}$
    $J_{(1)}$ $null_{(4)}$ $null_{(5)}$ $1_{(7)}$ $null_{(6)}$
    • Pairs: ${3,7}$
    • Min-Terms: 1 ie $K Q_{n}$
      SR Flip-Flop to JK Flip-Flop

Conversion: JK Flip-Flop to SR Flip-Flop

  • We need to excite JK Flip-Flop so it gets the Characteristics of SR Flip-Flop.
  • First, we define the Characteristics of SR Flip-Flop.
  • Next, we need the Excitation Table of JK Flip-Flop.
  • Merge the Excitation Table JK Flip-Flop, with the Characteristic Table of SR Flip-Flop.
    $S$ $R$ $Q_n$ $Q_{n+1}$ $J$ $K$
    0 0 0 0 0 x
    0 0 1 1 x 0
    0 1 0 0 0 x
    0 1 1 0 x 1
    1 0 0 1 1 x
    1 0 1 1 x 0
    1 1 0 x x x
    1 1 1 x x x
  • K-Map for $J$:
    $↓S\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
    $\bar S_{(0)}$ $null_{(0)}$ $x_{(1)}$ $x_{(3)}$ $null_{(2)}$
    $S_{(1)}$ $1_{(4)}$ $x_{(5)}$ $x_{(7)}$ $x_{(6)}$
    • Pairs: ${4,5,7,6}$
    • Min-Terms: 1 ie $S$
  • K-Map for $K$:
    $↓J\ |\ K {Q_n}→$ $\bar K \bar {Q_n}_{(00)}$ $\bar K {Q_n}_{(01)}$ $K {Q_n}_{(11)}$ $K \bar {Q_n}_{(10)}$
    $\bar S_{(0)}$ $null_{(0)}$ $null_{(1)}$ $1_{(3)}$ $x_{(2)}$
    $S_{(1)}$ $x_{(4)}$ $null_{(5)}$ $x_{(7)}$ $x_{(6)}$
    • Pairs: ${3,2,7,6}$
    • Min-Terms: 1 ie $R$
      JK Flip-Flop to SR Flip-Flop

Counters

  • A counter is a device that stores and sometimes displays the number of times a particular event or process has occured.
  • Counters count clock pulses.
  • They are usually constructed of a number of flip-flops connected in cascade.
  • We only use edge-triggered flip-flops, not level triggered flip-flops because of race condition of level triggered flip-flops.
  • For a 0-1-2-3-4-0 ... etc, counter, it counts from 0 to 1,2,3,4, then comes back to 0. There are a total of 5 states {0,1,2,3,4}, and it is a Mod-5 counter.
    • The counter moves to the next state everytime a clock pulse is applied to it.
    • Consequently, after every 5 clock pulses, it will come back to 0, if 0 is the starting state.
    • After 21 clock pulses, it'll will be 1 state ahead of the starting state, ie at 1.
      Counter
  • To design a Mod-5 counter, we need $n$ Flip-Flops, such that $2^n \geq M$. For $M=5$, $2^3 \geq 5$, so we need $3$ Flip-Flops.
  • If the counter sequence is 0-1-4-8-5, then it is a Mod-5 counter. We should need $3$ Flip-Flops. However, we also need to look at the maximum number in the sequence, which is $8$. To represent $8=1000$, we would need $4$ Flip-Flops. So, when a counter sequence is given, check both the number of states and the largest value in the sequence.
  • Types of Counters: Synchronous (+) & Asynchronous (-)
    + All clocks are externally triggered.
    - The 1st clock is externally triggered. The 2nd clock is triggered by the output of the first flip-flop, the 3rd one gets triggered by the output of 2nd flip-flop ... and so on.
    + We can design both sequential and non-sequential circuits (like 0-3-2-6-4).
    - We can only design Sequential circuits like 0-1-2-3 (UP Sequential) or 3-2-1-0 (DOWN Sequential).
    + It is faster.
    - It is comparatively slower.
    + If we want to disable some flip-flops, we have to use extra Gates, which increases the complexity.
    - It is relatively simpler.
    + Example: Ring, Twisted Ring Counter
    - Example: Ripple Counter

    Types of Counter

Synchronous Counter

  • Design a Synchronous Counter using D Flip-Flop: 0-1-3-2
    • Number of states: $4$, Largest number: $3$. $2^2=4$, and $3=11$, so we need 2 Flip-Flops.
    • Current inputs: $Q_1$, $Q_0$
    • Next inputs: $Q^+_1$, $Q^+_0$
    • Representational inputs to the D Flip-Flops: $D_1$, $D_0$
    • Steps:
      $Q_1$ $Q_0$ $Q^+_1$ $Q^+_0$ $D_1$ $D_0$
      0 0 0 1 0 1
      0 1 1 1 1 1
      1 0 0 0 0 0
      1 1 1 0 1 0
      1. Write the current inputs.
      2. For each input, write the next state by looking at the sequence (0-1-3-2).
      3. From the Excitation Table of the D Flip-Flop, write the D states:
        • $D_1$: Corresponds to $Q_1$ & $Q^+_1$
        • $D_0$: Corresponds to $Q_0$ & $Q^+_0$
      4. Generate the Flip-Flop for $D_1$, using the Current Inputs $Q_1$, $Q_0$.
        $↓Q_1\ |\ Q_0 →$ $\bar Q_0$ $Q_0$
        $\bar Q_1$ $null_{(0)}$ $1_{(1)}$
        $Q_1$ $null_{(2)}$ $1_{(3)}$
        • Pairs: ${1,3}$, Min-term: $Q_0$
      5. Generate the Flip-Flop for $D_0$, using the Current Inputs $Q_1$, $Q_0$.
        $↓Q_1\ |\ Q_0 →$ $\bar Q_0$ $Q_0$
        $\bar Q_1$ $1_{(0)}$ $1_{(1)}$
        $Q_1$ $null_{(2)}$ $null_{(3)}$
        • Pairs: ${0,1}$, Min-term: $\bar Q_1$
    • Logic Diagram:
      Synchronous Counter, D Flip-Flop

Asynchronous Counter

  • In Asynchronous counter, we can identify if it is an UP or DOWN counter, from it's representation. $Q$ & $\bar Q$ are the outputs used to trigger the clocks, and the arrows represent the clocks themselves.
    Asynchronous Counter ID

Ring Counter

  • Type: Synchronous
  • In an n-bit ring counter, out of $2^n$ states, there are n usable states, while the rest are not usable.
  • After n clock cycles, it returns to it's starting position.
  • States for 4-bit Counter:
    $Q_3$ $Q_2$ $Q_1$ $Q_0$
    1 0 0 0
    0 1 0 0
    0 0 1 0
    0 0 0 1
    1 0 0 0
  • After 4 clock cycles, the counter returns back to it's starting position.
  • In a 4-bit ring counter,
    • There are $2^4=16$ states.
    • There are 4 usable states: $1010, 0100, 0010, 0001$.
    • It will be called a Mod-4 Ring Counter.
      Ring Counter

Twisted Ring Counter

  • aka Johnson Counter
  • Type: Synchronous
  • In an n-bit ring counter, out of $2^n$ states, there are 2n usable states, while the rest are not usable.
  • After 2n clock cycles, it returns to it's starting position.
  • States for 4-bit Counter:
    $Q_3$ $Q_2$ $Q_1$ $Q_0$
    0 0 0 0
    0 1 0 0
    1 1 0 0
    1 1 1 0
    1 1 1 1
    0 1 1 1
    0 0 1 1
    0 0 0 1
    0 0 0 0
  • After 8 clock cycles, the counter returns back to it's starting position.
  • In a 4-bit Twisted Ring counter,
    • There are $2^4=16$ states.
    • There are 8 usable states: $0000,0100,1100,1110,1111,0111,0011,0001,0000$
    • It will be called a Mod-4 Twisted Ring Counter.
      Twisted Ring Counter

Shift Registers

  • Type: Synchronous
  • They are used to implement arithmetic operations: multiplication & division.
  • D Flip-Flops are used for making Shift Registers.
  • Left-Shift (for multiplication):
    1. 0 0 0 1 = 1
    2. 0 0 1 0 = 2 = 1*2
    3. 0 1 0 0 = 4 = 2*2
    4. 1 0 0 0 = 8 = 4*2
  • Right-Shift (for division):
    1. 1 0 0 0 = 8
    2. 0 1 0 0 = 4 = 8/2
    3. 0 0 1 0 = 2 = 4/2
    4. 0 0 0 1 = 1 = 2/2
  • 4 types of shift registers:
    1. SISO (Serial-In Serial-Out)
      SISO
    2. SIPO (Serial-In Parallel-Out)
      SIPO
    3. PISO (Parallel-In Serial-Out)
      PISO
    4. PIPO (Parallel-In Parallel-Out)
      PIPO
  • Number of clock cycles needed for n-shift register:
    Mode Loading Reading Total
    SISO n n-1 2n-1
    SIPO n 0 n
    PISO 1 n-1 n
    PIPO 1 0 1
  • Example 0:
    Shift Register Example 0
    • After 6 clock cycles, the value will be $1,1,1,1$ when initial value is $0,1,1,0$.
    • Outputs:
      Clocks $Q_3$ $Q_2$ $Q_1$ $Q_0$
      $C_0$ 0 1 1 0
      $C_1$ 1 0 1 1
      $C_2$ 0 1 0 1
      $C_3$ 1 0 1 0
      $C_4$ 1 1 0 1
      $C_5$ 1 1 1 0
      $C_6$ 1 1 1 1

Ranges of sign magnitude

  • Formulae
  • Table:
    USM SM 1's 2's
    0 000 +0 +0 +0
    1 001 +1 +1 +1
    2 010 +2 +2 +2
    3 011 +3 +3 +3
    4 100 -0 -3 -4
    5 101 -1 -2 -3
    6 110 -2 -1 -2
    7 111 -3 -0 -1
  • Explanation:
    • Unsigned Magnitude (USM): Self-explanatory.
    • Signed Magnitude (SM): In $010$, 0/1: +ve/-ve number, while $10=2$ in integer form. In $110$, it will be $-2$.
    • 1's Complement: Positive numbers (starting with 0) remain the same. For $110$, 1: -ve number, 1 becomes 0, and 0 becomes 1. So the result is $101$, which is $-1$.
    • 2's Complement: Positive numbers (starting with 0) remain the same. For $110$, $-12^{2}+12^{1}+0*2^{0}=-4+2=-2$. Note the $-$ sign for the 1st element, because the number is negative.
  • For Signed Magniture (SM) & 1's Complement: For n-bits, there are $2^n$ possible numbers, and the ranges are $-(2^{n-1}-1)$ to $(2^{n-1}-1)$

    If Range is $0$ to $2^n/2 - 1$, then $2^n/2-1=2^{n}.2^{-1}-1=2^{n-1}-1$

  • For 2's Complement: For n-bits, there are $2^n$ possible numbers, and the ranges are $-(2^{n-1})$ to $(2^{n-1}-1)$

    The negative range starts at one less than the previous, while the positive range remains the same.

Binary Operations

Addition

  • Example 0: $1110+1100=11010$, ie $14+12=26$
    • $1+1=10$, carry $1$. $1+1+1=11$, carry $1$.
  • Example 1: $1110.110+1100.011=11011.001$, ie $14.750+12.375=27.125$

Subtraction

  • Example 0: $1110-0101=1001$, ie $14-5=9$
    • $0-1=10-1=1$, borrow $1$.
  • Example 1: $1100-0101=0111$, ie $12-5=7$
    1. In $1100$, right-most 0 needs 1. It can't get it from the position 3 element. So, it gets it from the position 2 element.
    2. Position 2 element (1) will only give 10 to position 3 element (0).
    3. Again, position 3 element gives 1 to position 4 element.
    4. However,position 4 element gets 10 too, not 1.
    5. So, $10-1=1$, $1-0=1$, $0-1=10-1=1$, borrow $1$. $0-0=0$.
    • Whenever we borrow $1$ from a digit $1$, all the 0's on the right get $1$, but the right-most $0$ gets $10$.
  • Example 2: $11000-00001=10111$, ie $24-1=23$
    • See previous
  • Example 3: $11000-01111=01001$, ie $24-15=9$