-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy patheegEpoch.m
554 lines (507 loc) · 24.5 KB
/
eegEpoch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
% Creates an object from the class eegEpoch
% The class eegEpoch can handle epoched data either in channel or component space.
% The class defines methods for ERP computation, single trial wavelet denoising based on Quian and Garcia (2002),
% and time-frequency analysis. See examples below.
%
% Author: Alejandro Ojeda, Swartz Center for Computational Neuroscience, UCSD, 28-Aug-2012
% email: [email protected]
%
% Reference: Quian Quiroga, R., and Garcia, H., Single-trial event-related potentials with wavelet denoising.
% Clinical Neurophysiology 114 (2003) 376???390
%
% Before running the examples below, download example_erp.mat from http://code.google.com/p/mobilab/downloads/
% Then copy the code in a new .m file and press Ctrl+R to uncomment
% %% Loading the data
% load example_erp.mat;
% % data: event locked time series data (EEG channel data or independent componet), dimensions: number of time points X number of trials
% % time: time vector in seconds, dimensions: number of time points X 1
% % channelLabel: label of the channel/or component, example: 'Pz' for channel Pz, 'IC1' for independent component #1
% % condition: name of the condition, example: 'Target', 'Non target', and so on
% % preStimulusMaxLatency: [time(i) time(j)] interval considered as pre-stimulus period, dimension: two elements vector
%
% %% Constructing the object
% epochDataObj = eegEpoch('data',data,'time',time,'channelLabel',label,'condition',condition,'preStimulusMaxLatency',preStimulusMaxLatency);
%
% %% Plotting stacked trials and ERP
% plot(epochDataObj);
%
% %% Time/Frequency Analysis
% % Log-spaced frequencies are recommended because that way you are doing narrow-band decomposition at low frequencies and broad-band at high frequencies.
% % See the help of scal2frq on the Wavelet Toolbox
% fmin = 2; % 1Hz
% fmax = 40; % 40 Hz
% numFreq = 64 % 64 frequencies
% wname = 'cmor1-1.5'; % complex morlet wavelet, see the help of 'cwt' on the Wavelet Toolbox
% plotFlag = true; % plot the results
% [coefficients,ersp,itc,frequency,time] = waveletTimeFrequencyAnalysis(epochDataObj,wname,fmin,fmax,numFreq,plotFlag);
classdef eegEpoch < epochObject
properties
preStimulusMaxLatency
erp = [];
end
methods
function obj = eegEpoch(varargin)
obj@epochObject(varargin{:});
if length(varargin) < 7
obj.preStimulusMaxLatency = [1 floor(length(obj.timeStamp)/2)];
else obj.preStimulusMaxLatency = varargin{7};
end
end
%%
function erp = get.erp(obj)
if isempty(obj.erp),
disp('Computing wavelet-denoised ERP.');
obj.computeERP;
end
erp = obj.erp;
end
%%
function hFigure = plot(obj,channel)
dim = obj.mmfObj.Format{1,2};
if length(dim) == 3, Nch = dim(3);else Nch = 1;end
if nargin < 2, channel = 1:Nch;end
Nch = length(channel);
if Nch > 1
for it=1:Nch, hFigure = plot(obj,channel(it));end
return
end
[~,loc] = min(abs(obj.timeStamp));
hFigure = figure('Color',[0.93 0.96 1]);
subplot(211);imagesc(obj.timeStamp,1:dim(2),obj.data(:,obj.sorting,channel)');
title(['Trials ' obj.label{channel} ' Condition: ' obj.condition]);
hold on;plot([1 1]*obj.timeStamp(loc),get(gca,'YLim'),'k-.','LineWidth',2);
subplot(212);plot(obj.timeStamp,obj.erp(:,channel));
set(gca,'Xlim',obj.timeStamp([1 end]))
title(['ERP ' obj.label{channel} ' Condition: ' obj.condition]);
hold on;plot([1 1]*obj.timeStamp(loc),get(gca,'YLim'),'k-.','LineWidth',2);
xlabel('Time (sec)')
end
%%
function rmThis = detectOutliers(obj,threshold,plotFlag)
if nargin < 2, threshold = 0.99;end
if nargin < 3, plotFlag = false;end
rmThis = false(size(obj.data,2),1);
for it=1:length(obj.label)
D= pdist(obj.data(:,:,it)');
Y = mdscale(D,3);
r = sqrt(sum(Y.^2,2));
th = raylinv(threshold, raylfit(r));
rmThis = any([rmThis r>th],2);
end
if plotFlag
figure('Color',[0.93 0.96 1]);hold on;
scatter(Y(:,1),Y(:,2),'.','linewidth',2);
scatter(Y(rmThis,1),Y(rmThis,2),'r.','linewidth',2);
title('MDS trials');grid on;
if any(rmThis), legend({'normal' 'outliers'});
else legend({'normal'});
end
axis xy
end
end
%%
function removeOutliers(obj,rmThis)
persistent flag
if ~isempty(flag), disp('You have removed outliers already.');return;end
if nargin < 2, rmThis = detectOuliers(obj,0.95);end
data = obj.data(:,~rmThis,:);
fid = fopen(obj.binFile,'w');fwrite(fid,data(:),class(data));fclose(fid);
obj.mmfObj = memmapfile(obj.binFile,'Format',{class(data) size(data) 'x'},'Writable',true);
flag = 1;
end
%%
function sortingByTrialSimilarity(obj)
dim = size(obj.data);
% dataSVD = svdDenoising4ERP(obj.data(:,:,1),8);
% X = zscore(dataSVD);
X = zscore(obj.data);
if length(obj.label) > 1
X = permute(X,[1 3 2]);
X = reshape(X,[dim(1)*dim(3) dim(2)]);
end
D= pdist(X');
Y = mdscale(D,2);
r = sqrt(sum(Y.^2,2));
[~,obj.sorting] = sort(r);
end
%%
function erp = computeERP(obj,alpha)
if nargin < 2, alpha = 0.95;end
data = waveletDenoising(obj,alpha);
dim = size(data);
erp = zeros(dim(1),size(data,3));
for it=1:size(data,3)
erp(:,it) = geometric_median( squeeze(data(:,:,it))')';
end
obj.erp = erp;
end
%%
function [fdata, bootstat] = waveletDenoising(obj,alpha,channel)
if nargin < 2, alpha = 0.95;end
dim = obj.mmfObj.Format{1,2};
if length(dim) == 3, Nch = dim(3);else Nch = 1;end
if nargin < 3, channel = 1:Nch;end
Nch = length(channel);
if Nch > 1
fdata = obj.data;
for it=1:Nch
disp(['Channel ' num2str(it)]);
fdata(:,:,channel(it)) = waveletDenoising(obj,alpha,channel(it));
end
return
end
data = obj.data(:,:,channel);
mu = mean(data(obj.preStimulusMaxLatency(1):obj.preStimulusMaxLatency(2),:));
X = bsxfun(@minus,data,mu);
erp = mean(X,2); %#ok
% scales = logspace(0.59,2.8,64);
dt = diff(obj.timeStamp([1 2]));
dim = size(X);
%--
s0 = 4*dt; ds = 0.25; NbSc = 32;
wname = 'morl';
%scales = freq2scales(1, 1./dt/2, 64, wname, dt);
SIG = {erp,dt}; %#ok
SCA = {s0,ds,NbSc,'pow',2};
WAV = {wname,4};
%--
%-- computing wavelet coefficients
cwtStruct = cwtft(SIG,'scales',SCA,'wavelet',WAV);
%-- computing ITC
cwtStructTmp = cwtft({X,dt},'scales',SCA,'wavelet',WAV);
nf = size(cwtStructTmp.cfs,1);
coef = reshape(cwtStructTmp.cfs,[nf dim]);
P = coef./abs(coef);
itc = squeeze(abs(mean(P,3)));
coef = permute(coef,[3 1 2]);
coef = reshape(coef,[dim(2) nf*dim(1)]);
dim = [dim(2) nf dim(1)];
nboots = 5;
bootstat = bootstrp(nboots,@boots_itc,coef,ones(dim(1),1)*dim);
th = raylinv(alpha, raylfit(bootstat(:)));
if th < 1
Iitc = itc(:) > th;
I = Iitc;
[x,~] = ind2sub(size(cwtStruct.cfs),find(I));
ux = unique(x);
[~,loc]= min(abs(((1:NbSc)'*ones(1,length(ux)) - ones(NbSc,1)*ux')));
Nl = length(loc);
nelem = zeros(Nl,1);
for it=1:Nl, nelem(it) = sum(x==loc(it));end
rmThis = nelem < 0.25*median(nelem);
if sum(rmThis) < Nl, ux(rmThis) = [];end
ux(ux<4) = [];
I = ismember(1:NbSc,ux);
I = I(:)*ones(1,length(cwtStruct.omega));
I = logical(I(:));
else
I = true(numel(cwtStruct.cfs),1);
end
%--
fdata = X;
for it=1:dim(1)
cwtStruct = cwtft({X(:,it),dt},'scales',SCA,'wavelet',WAV);
cwtStruct.cfs(~I) = 0;
fdata(:,it) = icwtft(cwtStruct,'signal',{X(:,it),dt})';
end
end
%%
function [coefficients,ersp,itc,frequency,time] = waveletTimeFrequencyAnalysis(obj,wname,fmin,fmax,numFreq,plotFlag,numberOfBoundarySamples,multCompCorrectionMethod, varargin)
T = diff(obj(1).timeStamp([1 2]));
if nargin < 2, wname = 'cmor1-1.5';end
if nargin < 3, fmin = 2;end
if nargin < 4, fmax = 1/T/2;end
if nargin < 5, numFreq = 64;end
if nargin < 6, plotFlag = true;end
if nargin < 7, numberOfBoundarySamples = 0;end
if nargin < 8, multCompCorrectionMethod = 'none';end
Nsubjects = length(obj);
if Nsubjects > 1
[ersp,itc,frequency,time] = subjectLevelWaveletTimeFrequencyAnalysis(obj,wname,fmin,fmax,numFreq,plotFlag, multCompCorrectionMethod, varargin);
coefficients = [];
return
end
data = obj.mmfObj.Data.x;
dim = size(obj.data);
data = reshape(data,[size(data,1) prod(dim(2:end))]);
scales = freq2scales(fmin, fmax, numFreq, wname, T);
frequency = scal2frq(scales,wname,T);
frequency = fliplr(frequency);
if ~numberOfBoundarySamples
toCut = round(0.05*length(obj.timeStamp));
else
toCut = numberOfBoundarySamples;
end
time = obj.timeStamp(toCut:end-toCut-1);
%-- computing wavelet coefficients
coefficients = zeros([length(scales) dim(1) prod(dim(2:end))]);
hwait = waitbar(0,'Computing cwt...','Color',[0.93 0.96 1]);
prodDim = prod(dim(2:end));
for it=1:prodDim
coefficients(:,:,it) = cwt(data(:,it),scales,wname);
waitbar(it/prodDim,hwait);
end
close(hwait);
% fliping frequency dimension
coefficients = permute(coefficients,[2 1 3]);
coefficients = reshape(coefficients,[dim(1) length(scales) dim(2:end)]);
coefficients = flipdim(coefficients,2);
if toCut > obj.preStimulusMaxLatency(1), t1 = toCut; else t1 = obj.preStimulusMaxLatency(1);end
if length(obj.timeStamp)-toCut <= obj.preStimulusMaxLatency(2)
obj.preStimulusMaxLatency(2) = length(obj.timeStamp)-toCut-t1;
t2 = obj.preStimulusMaxLatency(2);
else
t2 = length(obj.timeStamp)-toCut;
end
coefficientsDB = 10*log10(abs(coefficients).^2+eps);
base = mean(coefficientsDB(t1:t2,:,:,:));
coefficients = coefficients(toCut:end-toCut-1,:,:,:);
coefficientsDB = 10*log10(abs(coefficients).^2+eps);
ersp = bsxfun(@minus,coefficientsDB,(base)+eps);
% ersp = squeeze(mean(ersp,3));
ersp = permute(ersp,[3 1 2 4]);
finalDim = size(ersp);
ersp = geometric_median(ersp(:,:));
ersp = reshape(ersp,finalDim(2:end));
itc = coefficients./abs(coefficients);
itc = squeeze(abs(mean(itc,3)));
Nv = length(varargin);
switch multCompCorrectionMethod
case 'none'
% disp('Not significance test was computed.');
case 'bootstrap'
if Nv < 1, nboot = 1000; else nboot = varargin{1};end
if Nv < 2, alpha = 0.05; else alpha = varargin{2};end
% ersp
coefficientsDB = permute(coefficientsDB,[3 setdiff(1:ndims(coefficientsDB),3)]);
dim = size(coefficientsDB);
coefficientsDB = reshape(coefficientsDB,[dim(1) prod(dim(2:end))]);
bootstat = bootstrp(nboot,@boots_ersp,coefficientsDB,ones(dim(1),1)*[t1 t2],ones(dim(1),1)*dim);
bootstat = reshape(bootstat,[nboot dim(2:end)]);
ersp = reshape(ersp,[prod(dim(2:3)) length(obj.label)]);
I1 = false(prod(dim(2:3)),length(obj.label));
I2 = false(prod(dim(2:3)),length(obj.label));
for it=1:length(obj.label)
tmp = bootstat(:,:,:,it);
tmp = reshape(tmp,[nboot prod(dim(2:3))]);
maxmin = prctile(tmp,100*[alpha 1-alpha],2);
% th = [min(th(:,1)) max(th(:,2))];
th(1) = prctile(maxmin(:,1),100*alpha);
th(2) = prctile(maxmin(:,2),100*(1-alpha));
I = ersp(:,it) > th(1) & ersp(:,it) < th(2);
I1(:,it) = I;
ersp(I,it) = 0;
end
ersp = reshape(ersp,[dim(2:3) length(obj.label)]);
% itc
coefficientsTmp = permute(coefficients,[3 setdiff(1:ndims(coefficients),3)]);
coefficientsTmp = reshape(coefficientsTmp,[dim(1) prod(dim(2:end))]);
bootstat = bootstrp(nboot,@boots_itc,coefficientsTmp,ones(dim(1),1)*dim);
bootstat = reshape(bootstat,[nboot dim(2:end)]);
itc = reshape(itc,[prod(dim(2:3)) length(obj.label)]);
for it=1:length(obj.label)
% th = raylinv((1-alpha), raylfit(itc(:,it)));
tmp = bootstat(:,:,:,it);
tmp = reshape(tmp,[nboot prod(dim(2:3))]);
th = prctile(tmp,100*(1-alpha),2);
th = prctile(th,100*(1-alpha));
I = itc(:,it) < th;
I2(:,it) = I;
itc(I,it) = 0;
end
itc = reshape(itc,[dim(2:3) length(obj.label)]);
otherwise
error('Unknown method. Stick to bootstrap by now.');
end
if plotFlag
G = fspecial('gaussian',[4 4],2);
ersp_s = ersp;
itc_s = itc;
for it=1:length(obj.label)
ersp_s(:,:,it) = imfilter(ersp_s(:,:,it),G,'same');
itc_s(:,:,it) = imfilter(itc_s(:,:,it), G,'same');
%ersp(I1) = 0;
%itc(I2) = 0;
eegEpoch.imageLogData(time,frequency,ersp_s(:,:,it));
title(['ERSP (dB) ' obj.label{it} ' Condition: ' obj.condition]);
strTitle = ['ITC ' obj.label{it} ' Condition: ' obj.condition];
eegEpoch.imageLogData(time,frequency,itc_s(:,:,it),strTitle);
end
end
end
end
methods(Hidden)
function [t_ersp,t_itc,frequency,time] = subjectLevelWaveletTimeFrequencyAnalysis(obj,wname,fmin,fmax,numFreq,plotFlag, multCompCorrectionMethod, varargin)
Nsubjects = length(obj);
if Nsubjects < 2, error('You must input an array of eegEpoch objects, each element in the array containing single subject data.');end
T = diff(obj(1).timeStamp([1 2]));
if nargin < 2, wname = 'cmor1-1.5';end
if nargin < 3, fmin = 2;end
if nargin < 4, fmax = 1/T/2;end
if nargin < 5, numFreq = 64;end
if nargin < 6, plotFlag = true;end
if nargin < 7, multCompCorrectionMethod = 'none';end
[~,ersp,itc,frequency,time] = waveletTimeFrequencyAnalysis(obj(1),wname,fmin,fmax,numFreq,false);
ersp = repmat(ersp,[1 1 Nsubjects]);
itc = repmat(itc,[1 1 Nsubjects]);
for it=2:Nsubjects
[~,ersp(:,:,it),itc(:,:,it)] = waveletTimeFrequencyAnalysis(obj(it),wname,fmin,fmax,numFreq,false);
if ~mod(it,10), fprintf(' %i%',round(100*it/Nsubjects));end
end
fprintf('\n');
ersp = permute(ersp,[3 1 2]);
itc = permute(itc,[3 1 2]);
t_ersp = tStudent2Dmap(ersp);
t_itc = tStudent2Dmap(itc);
Nv = length(varargin);
switch multCompCorrectionMethod
case 'bootstrap'
if Nv < 1, nboot = 1000; else nboot = varargin{1};end
if Nv < 2, alpha = 0.05; else alpha = varargin{2};end
if Nv < 3, tail = 'both';else tail = varargin{3}; end
% ersp
bootstat{1} = bootstrp(nboot,@tStudent2Dmap,ersp);
bootstat{2} = bootstrp(nboot,@tStudent2Dmap,itc);
switch tail
case 'both'
th = prctile(bootstat{1},100*[alpha 1-alpha],2);
th = [min(th(:,1)) max(th(:,2))];
I = t_ersp > th(1) & t_ersp < th(2);
t_ersp(I) = 0;
th = prctile(bootstat{2},100*[alpha 1-alpha],2);
th = [min(th(:,1)) max(th(:,2))];
I = t_itc > th(1) & t_itc < th(2);
t_itc(I) = 0;
pval = 100*[alpha 1-alpha];
case 'right'
th = prctile(bootstat{1},100*alpha,2);
th = max(th);
I = t_ersp < th;
t_ersp(I) = 0;
th = prctile(bootstat{2},100*alpha,2);
th = max(th);
I = t_itc < th;
t_itc(I) = 0;
pval = 100*alpha;
case 'left'
th = prctile(bootstat{1},100*(1-alpha),2);
th = min(th);
I = t_ersp > th;
t_ersp(I) = 0;
th = prctile(bootstat{2},100*(1-alpha),2);
th = min(th);
I = t_itc > th;
t_itc(I) = 0;
pval = 100*alpha;
otherwise
error('Wrong tail, select from: ''both'', or ''right''.');
end
otherwise
error('Unknown method. Stick to bootstrap by now.');
end
if plotFlag
strTitle = ['T-ERSP, pval = [ ' num2str(pval) '], ' obj(1).label{1} ' Condition: ' obj(1).condition];
imageLogData(time,frequency,t_ersp,strTitle);
strTitle = ['T-ITC, pval = [ ' num2str(pval) '], ' obj(1).label{1} ' Condition: ' obj(1).condition];
imageLogData(time,frequency,t_itc,strTitle);
end
end
end
methods(Static)
function imageLogData(time,frequency,data,strTitle)
if nargin < 4, strTitle = '';end
figure('Color',[0.93 0.96 1]);
imagesc(time,log10(frequency),data');
hAxes = gca;
tick = get(hAxes,'Ytick');
fval = 10.^tick;
Nf = length(tick);
yLabel = cell(Nf,1);
fval(fval >= 10) = round(fval(fval >= 10));
for it=1:Nf, yLabel{it} = num2str(fval(it),3);end
mx = max(data(:));
if min(data(:)) < 0,
mn = -mx;
else
mn = min(data(:));
end
set(hAxes,'YDir','normal','Ytick',tick,'YTickLabel',yLabel,'CLim',[mn mx]);
[~,loc] = min(abs(time));
hold(hAxes,'on');plot([1 1]*time(loc),get(hAxes,'YLim'),'k-.','LineWidth',2);
xlabel('Time (sec)');
ylabel('Frequency (Hz)');
title(strTitle)
colorbar;
end
end
end
%-
function ersp = boots_ersp(coefficientsDB,preStimulusLatency,dim)
coefficientsDB = reshape(coefficientsDB,dim(1,:));
base = mean(coefficientsDB(:,preStimulusLatency(1,1):preStimulusLatency(1,2),:,:),2);
ersp = bsxfun(@minus,coefficientsDB,base+eps);
ersp = squeeze(mean(ersp));
end
%--
function itc = boots_itc(coefficients,dim)
coefficients = reshape(coefficients,dim(1,:));
itc = coefficients./abs(coefficients);
itc = squeeze(abs(mean(itc)));
end
%--
function [geometricMedian,convergenceHistory,weights]= geometric_median(x, varargin)
% geometricMedian = geometric_median(x, {key, value pairs})
% Input
%
% x is an N x M matrix, representing N observations of a M-dimensional matrix.
%
% Key, value pairs
%
% initialGuess is optional an 1 x M matrix, representing the initial guess for the gemetrix median
%
% tolerance an scalar value. It is the maximum relative change in geometricMedian vector (size of the change in
% the last iteration divided by the size of the geometricMedian vector) that makes the
% algorithm to continue to the next iteration. If relative change is less than tolerance, it is assumed
% that convergence is achieved.
% had a relative change more than tolerance then more iterations are performed.
% default = 1e-4.
%
% Output
% geometricMedian is an 1 x m matrix.
% convergenceHistory shows the value of maximum relative chage, which is compared to tolerance in
% each iteration.
% use mean as the median as an initial guess if none is provided.
inputOptions = finputcheck(varargin, ...
{'initialGuess' 'real' [] mean(x);...
'tolerance' 'real' [0 1] 1e-4;...
'maxNumberOfIterations' 'integer' [1 Inf] 1000;...
});
geometricMedian = inputOptions.initialGuess;
for i=1:inputOptions.maxNumberOfIterations
lastGeometricMedian = geometricMedian;
differenceToEstimatedMedian = bsxfun(@minus, x, geometricMedian);
sizeOfDifferenceToEstimatedMedian = (sum(differenceToEstimatedMedian .^2, 2) .^ 0.5);
oneOverSizeOfDifferenceToEstimatedMedian = 1 ./ sizeOfDifferenceToEstimatedMedian;
% to prevent nans
oneOverSizeOfDifferenceToEstimatedMedian(isinf(oneOverSizeOfDifferenceToEstimatedMedian)) = 1e20;
geometricMedian = sum(bsxfun(@times, x , oneOverSizeOfDifferenceToEstimatedMedian)) / sum(oneOverSizeOfDifferenceToEstimatedMedian);
%maxRelativeChange = max(max(abs(lastGeometricMedian - geometricMedian)) ./ abs(geometricMedian));
maxRelativeChange = (sum((lastGeometricMedian - geometricMedian).^2) / sum(geometricMedian.^2)) .^ 0.5;
if nargout > 1, convergenceHistory(i) = maxRelativeChange;end;
if (maxRelativeChange < inputOptions.tolerance || isnan(maxRelativeChange)), break;end
end
if nargout > 2
differenceToEstimatedMedian = bsxfun(@minus, x, geometricMedian);
sizeOfDifferenceToEstimatedMedian = (sum(differenceToEstimatedMedian .^2, 2) .^ 0.5);
oneOverSizeOfDifferenceToEstimatedMedian = 1 ./ sizeOfDifferenceToEstimatedMedian;
% to prevent nans
oneOverSizeOfDifferenceToEstimatedMedian(isinf(oneOverSizeOfDifferenceToEstimatedMedian)) = 1e20;
weights = oneOverSizeOfDifferenceToEstimatedMedian / sum(oneOverSizeOfDifferenceToEstimatedMedian);
end
end
%%
function t = tStudent2Dmap(x)
n = size(x,1);
t = mean(x)./(std(x)+eps)/sqrt(n);
t = squeeze(t);
end