forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpollard_rho.rs
280 lines (266 loc) · 8.69 KB
/
pollard_rho.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use super::miller_rabin;
struct LinearCongruenceGenerator {
// modulus as 2 ^ 32
multiplier: u32,
increment: u32,
state: u32,
}
impl LinearCongruenceGenerator {
fn new(multiplier: u32, increment: u32, state: u32) -> Self {
Self {
multiplier,
increment,
state,
}
}
fn next(&mut self) -> u32 {
self.state = (self.multiplier as u64 * self.state as u64 + self.increment as u64) as u32;
self.state
}
fn get_64bits(&mut self) -> u64 {
((self.next() as u64) << 32) | (self.next() as u64)
}
}
fn gcd(mut a: u64, mut b: u64) -> u64 {
while a != 0 {
let tmp = b % a;
b = a;
a = tmp;
}
b
}
#[inline]
fn advance(x: u128, c: u64, number: u64) -> u128 {
((x * x) + c as u128) % number as u128
}
fn pollard_rho_customizable(
number: u64,
x0: u64,
c: u64,
iterations_before_check: u32,
iterations_cutoff: u32,
) -> u64 {
/*
Here we are using Brent's method for finding cycle.
It is generally faster because we will not use `advance` function as often
as Floyd's method.
We also wait to do a few iterations before calculating the GCD, because
it is an expensive function. We will correct for overshooting later.
This function may return either 1, `number` or a proper divisor of `number`
*/
let mut x = x0 as u128; // tortoise
let mut x_start = 0_u128; // to save the starting tortoise if we overshoot
let mut y = 0_u128; // hare
let mut remainder = 1_u128;
let mut current_gcd = 1_u64;
let mut max_iterations = 1_u32;
while current_gcd == 1 {
y = x;
for _ in 1..max_iterations {
x = advance(x, c, number);
}
let mut big_iteration = 0_u32;
while big_iteration < max_iterations && current_gcd == 1 {
x_start = x;
let mut small_iteration = 0_u32;
while small_iteration < iterations_before_check
&& small_iteration < (max_iterations - big_iteration)
{
small_iteration += 1;
x = advance(x, c, number);
let diff = (x as i128 - y as i128).abs() as u128;
remainder = (remainder * diff) % number as u128;
}
current_gcd = gcd(remainder as u64, number);
big_iteration += iterations_before_check;
}
max_iterations *= 2;
if max_iterations > iterations_cutoff {
break;
}
}
if current_gcd == number {
while current_gcd == 1 {
x_start = advance(x_start, c, number);
current_gcd = gcd((x_start as i128 - y as i128).abs() as u64, number);
}
}
current_gcd
}
/*
Note: using this function with `check_is_prime` = false
and a prime number will result in an infinite loop.
RNG's internal state is represented as `seed`. It is
advisable (but not mandatory) to reuse the saved seed value
In subsequent calls to this function.
*/
pub fn pollard_rho_get_one_factor(number: u64, seed: &mut u32, check_is_prime: bool) -> u64 {
// LCG parameters from wikipedia
let mut rng = LinearCongruenceGenerator::new(1103515245, 12345, *seed);
if number <= 1 {
return number;
}
if check_is_prime {
let mut bases = vec![2u64, 3, 5, 7];
if number > 3_215_031_000 {
bases.append(&mut vec![11, 13, 17, 19, 23, 29, 31, 37]);
}
if miller_rabin(number, &bases) == 0 {
return number;
}
}
let mut factor = 1u64;
while factor == 1 || factor == number {
let x = rng.get_64bits();
let c = rng.get_64bits();
factor = pollard_rho_customizable(
number,
(x % (number - 3)) + 2,
(c % (number - 2)) + 1,
32,
1 << 18, // This shouldn't take much longer than number ^ 0.25
);
// These numbers were selected based on local testing.
// For specific applications there maybe better choices.
}
*seed = rng.state;
factor
}
fn get_small_factors(mut number: u64, primes: &[usize]) -> (u64, Vec<u64>) {
let mut result: Vec<u64> = Vec::new();
for p in primes {
while (number % *p as u64) == 0 {
number /= *p as u64;
result.push(*p as u64);
}
}
(number, result)
}
fn factor_using_mpf(mut number: usize, mpf: &[usize]) -> Vec<u64> {
let mut result = Vec::new();
while number > 1 {
result.push(mpf[number] as u64);
number /= mpf[number];
}
result
}
/*
`primes` and `minimum_prime_factors` use usize because so does
LinearSieve implementation in this repository
*/
pub fn pollard_rho_factorize(
mut number: u64,
seed: &mut u32,
primes: &[usize],
minimum_prime_factors: &[usize],
) -> Vec<u64> {
if number <= 1 {
return vec![];
}
let mut result: Vec<u64> = Vec::new();
{
// Create a new scope to keep the outer scope clean
let (rem, mut res) = get_small_factors(number, primes);
number = rem;
result.append(&mut res);
}
if number == 1 {
return result;
}
let mut to_be_factored = vec![number];
while !to_be_factored.is_empty() {
let last = to_be_factored.pop().unwrap();
if last < minimum_prime_factors.len() as u64 {
result.append(&mut factor_using_mpf(last as usize, minimum_prime_factors));
continue;
}
let fact = pollard_rho_get_one_factor(last, seed, true);
if fact == last {
result.push(last);
continue;
}
to_be_factored.push(fact);
to_be_factored.push(last / fact);
}
result.sort_unstable();
result
}
#[cfg(test)]
mod test {
use super::super::LinearSieve;
use super::*;
fn check_is_proper_factor(number: u64, factor: u64) -> bool {
factor > 1 && factor < number && ((number % factor) == 0)
}
fn check_factorization(number: u64, factors: &[u64]) -> bool {
let bases = vec![2u64, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
let mut prod = 1_u64;
let mut prime_check = 0_u64;
for p in factors {
prod *= *p;
prime_check |= miller_rabin(*p, &bases);
}
prime_check == 0 && prod == number
}
#[test]
fn one_factor() {
// a few small cases
let mut sieve = LinearSieve::new();
sieve.prepare(1e5 as usize).unwrap();
let numbers = vec![1235, 239874233, 4353234, 456456, 120983];
let mut seed = 314159_u32; // first digits of pi; nothing up my sleeve
for num in numbers {
let factor = pollard_rho_get_one_factor(num, &mut seed, true);
assert!(check_is_proper_factor(num, factor));
let factor = pollard_rho_get_one_factor(num, &mut seed, false);
assert!(check_is_proper_factor(num, factor));
assert!(check_factorization(
num,
&pollard_rho_factorize(num, &mut seed, &sieve.primes, &sieve.minimum_prime_factor)
));
}
// check if it goes into infinite loop if `number` is prime
let numbers = vec![
2, 3, 5, 7, 11, 13, 101, 998244353, 1000000007, 1000000009, 1671398671, 1652465729,
1894404511, 1683402997, 1661963047, 1946039987, 2071566551, 1867816303, 1952199377,
1622379469, 1739317499, 1775433631, 1994828917, 1818930719, 1672996277,
];
for num in numbers {
assert_eq!(pollard_rho_get_one_factor(num, &mut seed, true), num);
assert!(check_factorization(
num,
&pollard_rho_factorize(num, &mut seed, &sieve.primes, &sieve.minimum_prime_factor)
));
}
}
#[test]
fn big_numbers() {
// Bigger cases:
// Each of these numbers is a product of two 31 bit primes
// This shouldn't take more than a 10ms per number on a modern PC
let mut seed = 314159_u32; // first digits of pi; nothing up my sleeve
let numbers: Vec<u64> = vec![
2761929023323646159,
3189046231347719467,
3234246546378360389,
3869305776707280953,
3167208188639390813,
3088042782711408869,
3628455596280801323,
2953787574901819241,
3909561575378030219,
4357328471891213977,
2824368080144930999,
3348680054093203003,
2704267100962222513,
2916169237307181179,
3669851121098875703,
];
for num in numbers {
assert!(check_factorization(
num,
&pollard_rho_factorize(num, &mut seed, &vec![], &vec![])
));
}
}
}