-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
804 lines (695 loc) · 35.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import os
import uuid
import extruct
from objects import Article, Person, Author
import wikipedia
from bs4 import BeautifulSoup
import traceback
import inspect
from flask import Flask, request, session
import pandas as pd
def clean_json(value):
"""
Recursively remove all None values from dictionaries and lists, and returns
the result as a new dictionary or list.
"""
if isinstance(value, list):
return [clean_json(x) for x in value if x is not None]
elif isinstance(value, dict):
return {
key: clean_json(val)
for key, val in value.items()
if val is not None
}
else:
return value
def extract_metadata(text):
"""
Extract all metadata present in the page and return a dictionary of metadata lists.
Initially authored by Ricardo Usbeck
Args:
Returns:
metadata (dict): Dictionary of json-ld, microdata, and opengraph lists.
Each of the lists present within the dictionary contains multiple dictionaries.
"""
metadata = extruct.extract(text,
uniform=True,
syntaxes=['json-ld',
'microdata',
'opengraph'])
return metadata
def is_author_in(name, authors):
"""
Verifies if the author is already in the results
Args:
name: name of the author
authors: list of the results
Returns:
True if it's already there and False if not
"""
for author in authors:
if type(author) is not Person:
continue
if author.name == name:
return author
return None
def is_article_in(title, articles):
"""
Verifies if the paper is already in the results
Args:
title: name of the paper
articles: list of the results
Returns:
True if it's already there and False if not
"""
for article in articles:
if type(article) is not Article:
continue
if article.title == title:
return article
return None
def read_wikipedia(title):
wikipedia.set_lang("en")
try:
summary_text = wikipedia.summary(title, 3, redirect=True)
except:
return ""
return summary_text
def remove_html_tags(text):
soup = BeautifulSoup(text, "html.parser")
return soup.text.strip()
def remove_line_tags(text):
return text.replace('\n', ' ').replace('\t', ' ')
def generate_string_from_keys(dictionary):
keys_list = list(dictionary.keys())
keys_string = " ".join(keys_list)
return keys_string
from dateparser import parse
from datetime import timedelta
def parse_date(date_str):
try:
parsed_date_str = parse(date_str).strftime("%Y-%m-%d")
return parsed_date_str
except (TypeError, ValueError):
print(f"original date str: {date_str}")
return ""
def parse_report_date_range(report_date_range):
if report_date_range:
start_date = datetime.strptime(report_date_range.partition(' - ')[0], current_app.config['DATE_FORMAT_FOR_REPORT'])
end_date = datetime.strptime(report_date_range.partition(' - ')[2], current_app.config['DATE_FORMAT_FOR_REPORT'])
else:
# default the date range filter to last 7 days
# start_date = (datetime.now()+timedelta(days=-6))
start_date = datetime.now()
end_date = datetime.now()
return start_date, end_date
def parse_date_range_for_elastic(start_date, end_date):
start_date = start_date.strftime(current_app.config['DATE_FORMAT_FOR_ELASTIC'])
# Add a day to end-date so it can include that the documents for that day too
end_date = (end_date+timedelta(days=0)).strftime(current_app.config['DATE_FORMAT_FOR_ELASTIC'])
return start_date, end_date
# def sort_results_publications(results):
# def custom_sort_key(obj):
# desc = getattr(obj, 'description', '')
# pub_date = getattr(obj, 'datePublished', '0000-00-00')
# if desc == '':
# return (0, pub_date)
# return (1, pub_date)
# return sorted(results, key=custom_sort_key, reverse=True)
from rank_bm25 import BM25Plus
def sort_search_results(search_term, search_results):
tokenized_results = [str(result).lower().split(" ") for result in search_results]
if len(tokenized_results) > 0:
bm25 = BM25Plus(tokenized_results)
tokenized_query = search_term.lower().split(" ")
doc_scores = bm25.get_scores(tokenized_query)
for idx, doc_score in enumerate(doc_scores):
search_results[idx].rankScore = doc_score
search_results = sorted(search_results, key=lambda x: x.rankScore, reverse=True)
# return sorted(search_results, key=lambda x: x.rankScore, reverse=True)
def split_authors(authors_names, seperator, authors_list):
authors = authors_names.split(seperator)
for author in authors:
_author = Author()
_author.type = 'Person'
_author.name = author
authors_list.append(_author)
#region User Activity Logging
from elasticsearch import Elasticsearch, exceptions
es_client = Elasticsearch(
os.environ.get("ELASTIC_SERVER", ""), # Elasticsearch endpoint
basic_auth=(os.environ.get("ELASTIC_USERNAME", ""), os.environ.get("ELASTIC_PASSWORD", "")),
# api_key="aWozWnVKQUItaEJISkZmZS1hd1c6WFQ3OUdZdUlTZFdZUDlqcmVGVkhvdw==",
)
from enum import Enum
class ES_Index(Enum):
user_activity_log = 1
user_agent_log = 2
users = 3
event_logs = 4
search_term_log = 5
# create all the indices if they don't exist
# ignore 400 caused by IndexAlreadyExistsException when creating an index
for idx in ES_Index:
"""Create the given ElasticSearch index and ignore error if it already exists"""
try:
es_client.indices.create(index=idx.name)
except exceptions.RequestError as ex:
if ex.error == 'resource_already_exists_exception':
pass # Index already exists. Ignore.
else: # Other exception - raise it
raise ex
from datetime import datetime, timezone
from flask import request, current_app
from flask_login import current_user
from ua_parser import user_agent_parser
def log_activity(user_activity):
es_client.index(
index=ES_Index.user_activity_log.name,
document={
"timestamp": datetime.now(timezone.utc),
"user_email": session.get('current-user-email', ""),
"session_id": session.get('gateway-session-id', ""),
"visitor_id": "", #this will be updated later via ajax call
"url": request.url,
"host": request.host,
"url_root": request.root_url,
"base_url": request.base_url,
"path": request.path,
"description": user_activity,
}
)
def get_user_activities(start_date, end_date):
start_date, end_date = parse_date_range_for_elastic(start_date, end_date)
result = es_client.search(index=ES_Index.user_activity_log.name,
size=10000,
query = {
"range": {
"timestamp": {
"gte":start_date,
"lte":end_date,
}
}
},
sort=[{ "timestamp" : "desc" }])
return result["hits"]["hits"]
def log_search_term(search_term):
es_client.index(
index=ES_Index.search_term_log.name,
document={
"timestamp": datetime.now(timezone.utc),
"user_email": session.get('current-user-email', ""),
"session_id": session.get('gateway-session-id', ""),
"visitor_id": "", #this will be updated later via ajax call
"url": request.url,
"search_term": search_term,
}
)
def get_search_terms(start_date, end_date):
start_date, end_date = parse_date_range_for_elastic(start_date, end_date)
result = es_client.search(index=ES_Index.search_term_log.name,
size=10000,
query = {
"range": {
"timestamp": {
"gte":start_date,
"lte":end_date,
}
}
},
sort=[{ "timestamp" : "desc" }])
return result["hits"]["hits"]
def log_agent():
# first check if the agent details already exist for this session id, if not then add them, else update that record
result = es_client.search(index=ES_Index.user_agent_log.name, query={"match": {"session_id": {"query": session.get('gateway-session-id','')}}})
result_rec_count = int(result["hits"]["total"]["value"])
if result_rec_count > 0:
hit = result["hits"]["hits"][0]
es_client.update(
index=ES_Index.user_agent_log.name,
id=hit['_id'],
doc={
"timestamp_updated": datetime.now(timezone.utc),
"url": request.url,
}
)
else:
#extract user agent details from the request headers
user_agent_string = request.headers.get("user-agent")
user_agent_parsed = user_agent_parser.Parse(user_agent_string)
es_client.index(
index=ES_Index.user_agent_log.name,
document={
"timestamp_created": datetime.now(timezone.utc),
"timestamp_updated": datetime.now(timezone.utc),
"user_email": session.get('current-user-email', ""),
"session_id": session.get('gateway-session-id', ""),
"visitor_id": "", #this will be updated later via ajax call
"ip_address": request.environ.get('HTTP_X_REAL_IP', request.remote_addr),
"user_agent": user_agent_string,
"device_family": user_agent_parsed.get('device',{}).get('family',""),
"device_brand": user_agent_parsed.get('device',{}).get('major',""),
"device_model": user_agent_parsed.get('device',{}).get('minor',""),
"os_family": user_agent_parsed.get('os',{}).get('family',""),
"os_major": user_agent_parsed.get('os',{}).get('major',""),
"os_minor": user_agent_parsed.get('os',{}).get('minor',""),
"os_patch": user_agent_parsed.get('os',{}).get('patch',""),
"os_patch_minor": user_agent_parsed.get('os',{}).get('patch_minor',""),
"user_agent_family": user_agent_parsed.get('user_agent',{}).get('family',""),
"user_agent_major": user_agent_parsed.get('user_agent',{}).get('major',""),
"user_agent_minor": user_agent_parsed.get('user_agent',{}).get('minor',""),
"user_agent_patch": user_agent_parsed.get('user_agent',{}).get('patch',""),
"user_agent_language": request.user_agent.language,
"url": request.url,
# "host": request.host,
# "url_root": request.root_url,
# "base_url": request.base_url,
# "path": request.path,
}
)
def get_user_agents(start_date, end_date, timestamp_filter="timestamp_updated"):
start_date, end_date = parse_date_range_for_elastic(start_date, end_date)
result = es_client.search(index=ES_Index.user_agent_log.name,
size=10000,
query = {
"range": {
timestamp_filter: {
"gte":start_date,
"lte":end_date,
}
}
},
sort=[{ timestamp_filter : "desc" }])
return result["hits"]["hits"]
def log_event(type: str = "info", filename: str = None, method: str = None, args = None, kwargs = None, message: str = None, traceback = None):
if not filename:
caller_frame = inspect.stack()[1]
caller_filename_full = caller_frame.filename
filename = os.path.splitext(os.path.basename(caller_filename_full))[0]
if not method:
method = inspect.stack()[1][3]
es_client.index(
index=ES_Index.event_logs.name,
document={
"timestamp": datetime.now(timezone.utc),
"type": type,
"filename": filename,
"method": method,
"args": args,
"kwargs": kwargs,
"message": message,
"traceback": traceback
}
)
def get_events(start_date, end_date, log_type):
start_date, end_date = parse_date_range_for_elastic(start_date, end_date)
# result = es_client.search(index=ES_Index.event_logs.name, query={"match": {"type": {"query": "error"}}}, size=100, sort=[{ "timestamp" : "asc" }])
result = es_client.search(index=ES_Index.event_logs.name,
size=10000,
query={
"bool" : {
"must" : [
{ "term" : { "type.keyword" : log_type } },
{ "range": { "timestamp": { "gte":start_date, "lte":end_date }} }
]
}
},
sort=[{ "timestamp" : "desc" }])
return result["hits"]["hits"]
def delete_event(event_id:str):
es_client.delete(index=ES_Index.event_logs.name, id=event_id)
def update_visitor_id(visitor_id:str):
result = es_client.search(index=ES_Index.user_activity_log.name,
query={
"bool" : {
"must" : [
{ "term" : { "session_id.keyword" : session.get('gateway-session-id', '') } },
{ "term" : { "visitor_id.keyword" : "" } }
]
}
})
result_rec_count = int(result["hits"]["total"]["value"])
# print(f"user_activity_log - {result_rec_count=}")
if result_rec_count > 0:
hits = result["hits"]["hits"]
for hit in hits:
es_client.update(
index=ES_Index.user_activity_log.name,
id=hit['_id'],
doc={
"visitor_id": visitor_id,
}
)
result = es_client.search(index=ES_Index.search_term_log.name,
query={
"bool" : {
"must" : [
{ "term" : { "session_id.keyword" : session.get('gateway-session-id', '') } },
{ "term" : { "visitor_id.keyword" : "" } }
]
}
})
result_rec_count = int(result["hits"]["total"]["value"])
# print(f"search_term_log - {result_rec_count=}")
if result_rec_count > 0:
hits = result["hits"]["hits"]
for hit in hits:
es_client.update(
index=ES_Index.search_term_log.name,
id=hit['_id'],
doc={
"visitor_id": visitor_id,
}
)
result = es_client.search(index=ES_Index.user_agent_log.name,
query={
"bool" : {
"must" : [
{ "term" : { "session_id.keyword" : session.get('gateway-session-id', '') } },
{ "term" : { "visitor_id.keyword" : "" } }
]
}
})
result_rec_count = int(result["hits"]["total"]["value"])
# print(f"user_agent_log - {result_rec_count=}")
if result_rec_count > 0:
hits = result["hits"]["hits"]
for hit in hits:
es_client.update(
index=ES_Index.user_agent_log.name,
id=hit['_id'],
doc={
"visitor_id": visitor_id,
}
)
def generate_registered_users_summaries():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_users = get_users(year_start_date, current_date)
# generate monthly summary for current year
df_current_year_users = pd.json_normalize(current_year_users)
df_current_year_users = df_current_year_users[['_id', '_source.timestamp_created']]
df_current_year_users = df_current_year_users.rename(columns={'_id': 'id', '_source.timestamp_created': 'timestamp'})
# Convert timestamp to datetime object
df_current_year_users['timestamp'] = pd.to_datetime(df_current_year_users['timestamp'], format='ISO8601')
# Create a new column for the month
df_current_year_users['month'] = df_current_year_users['timestamp'].dt.month_name()
# Group the data by month and count the unique ID's
grouped_df = df_current_year_users.groupby('month')['id'].nunique()
# Turn series into DataFrame
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
# Handling months with no data
all_months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
result_df.set_index('month', inplace = True)
result_df = result_df.reindex(all_months).fillna(0).reset_index()
result_df = result_df.rename(columns={'month': 'x', 'Unique ID count': 'y'})
current_year_users = result_df.to_dict('records')
current_year_users_count = df_current_year_users.shape[0]
# generate daily summary for current month
month_start_date = pd.to_datetime(datetime.today().replace(day=1, hour=0, minute=0, second=0, microsecond=0), utc=True)
df_current_month_users = df_current_year_users[(df_current_year_users['timestamp'] > month_start_date)]
# Create a new column for the day of the month
df_current_month_users['day'] = df_current_month_users['timestamp'].dt.day
df_current_month_users['day'] = df_current_month_users['day'].apply(str)
# Group the data by day and count the unique ID's
grouped_df = df_current_month_users.groupby('day')['id'].nunique()
# Turn series into DataFrame
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
# Handling months with no data
all_days = [str(i).zfill(2) for i in range(1, 32)] # this should actually be limited to the number of days in the current month.
result_df.set_index('day', inplace = True)
result_df = result_df.reindex(all_days).fillna(0).reset_index()
result_df = result_df.rename(columns={'day': 'x', 'Unique ID count': 'y'})
current_month_users = result_df.to_dict('records')
current_month_users_count = df_current_month_users.shape[0]
return current_month_users, current_month_users_count, current_year_users, current_year_users_count
def generate_visitors_summaries():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_visitors = get_user_agents(year_start_date, current_date, timestamp_filter="timestamp_created")
# generate monthly summary for current year
df_current_year_visitors = pd.json_normalize(current_year_visitors)
df_current_year_visitors = df_current_year_visitors[['_source.visitor_id', '_source.timestamp_created']]
df_current_year_visitors = df_current_year_visitors.rename(columns={'_source.visitor_id': 'id', '_source.timestamp_created': 'timestamp'})
# Convert timestamp to datetime object
df_current_year_visitors['timestamp'] = pd.to_datetime(df_current_year_visitors['timestamp'], format='ISO8601')
# Create a new column for the month
df_current_year_visitors['month'] = df_current_year_visitors['timestamp'].dt.month_name()
# Group the data by month and count the unique ID's
grouped_df = df_current_year_visitors.groupby('month')['id'].nunique()
# Turn series into DataFrame
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
# Handling months with no data
all_months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
result_df.set_index('month', inplace = True)
result_df = result_df.reindex(all_months).fillna(0).reset_index()
result_df = result_df.rename(columns={'month': 'x', 'Unique ID count': 'y'})
current_year_visitors = result_df.to_dict('records')
current_year_visitors_count = df_current_year_visitors.shape[0]
# generate daily summary for current month
month_start_date = pd.to_datetime(datetime.today().replace(day=1, hour=0, minute=0, second=0, microsecond=0), utc=True)
df_current_month_visitors = df_current_year_visitors[(df_current_year_visitors['timestamp'] > month_start_date)]
# Create a new column for the day of the month
df_current_month_visitors['day'] = df_current_month_visitors['timestamp'].dt.day
df_current_month_visitors['day'] = df_current_month_visitors['day'].apply(str)
# Group the data by day and count the unique ID's
grouped_df = df_current_month_visitors.groupby('day')['id'].nunique()
# Turn series into DataFrame
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
# Handling months with no data
all_days = [str(i).zfill(2) for i in range(1, 32)] # this should actually be limited to the number of days in the current month.
result_df.set_index('day', inplace = True)
result_df = result_df.reindex(all_days).fillna(0).reset_index()
result_df = result_df.rename(columns={'day': 'x', 'Unique ID count': 'y'})
current_month_visitors = result_df.to_dict('records')
current_month_visitors_count = df_current_month_visitors.shape[0]
return current_month_visitors, current_month_visitors_count, current_year_visitors, current_year_visitors_count
def generate_user_agent_family_summary():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_visitors = get_user_agents(year_start_date, current_date, timestamp_filter="timestamp_created")
df_current_year_visitors = pd.json_normalize(current_year_visitors)
df_current_year_visitors = df_current_year_visitors[['_source.visitor_id', '_source.user_agent_family']]
df_current_year_visitors = df_current_year_visitors.rename(columns={'_source.visitor_id': 'id', '_source.user_agent_family': 'user_agent'})
df_current_year_visitors.drop_duplicates(inplace=True)
grouped_df = df_current_year_visitors.groupby('user_agent')['id'].nunique()
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
current_year_ua_series = result_df['Unique ID count'].tolist()
current_year_ua_labels = result_df['user_agent'].tolist()
current_year_ua_count = result_df.shape[0]
print(f'{current_year_ua_series=}')
print(f'{current_year_ua_labels=}')
return current_year_ua_series, current_year_ua_labels, current_year_ua_count
def generate_operating_system_family_summary():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_visitors = get_user_agents(year_start_date, current_date, timestamp_filter="timestamp_created")
df_current_year_visitors = pd.json_normalize(current_year_visitors)
df_current_year_visitors = df_current_year_visitors[['_source.visitor_id', '_source.os_family']]
df_current_year_visitors = df_current_year_visitors.rename(columns={'_source.visitor_id': 'id', '_source.os_family': 'os'})
df_current_year_visitors.drop_duplicates(inplace=True)
grouped_df = df_current_year_visitors.groupby('os')['id'].nunique()
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'Unique ID count'})
current_year_os_series = result_df['Unique ID count'].tolist()
current_year_os_labels = result_df['os'].tolist()
current_year_os_count = result_df.shape[0]
print(f'{current_year_os_series=}')
print(f'{current_year_os_labels=}')
return current_year_os_series, current_year_os_labels, current_year_os_count
def generate_search_term_summary():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_searches = get_search_terms(year_start_date, current_date)
df_current_year_searches = pd.json_normalize(current_year_searches)
df_current_year_searches = df_current_year_searches[['_id', '_source.search_term']]
df_current_year_searches = df_current_year_searches.rename(columns={'_id': 'id', '_source.search_term': 'search_term'})
grouped_df = df_current_year_searches.groupby('search_term')['id'].count()
current_year_search_terms = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'count'})
# sort by count and pick top 10
current_year_search_terms_top10 = current_year_search_terms.nlargest(10, 'count')
dict_current_year_search_terms_top10 = current_year_search_terms_top10.set_index('search_term').T.to_dict('list')
return dict_current_year_search_terms_top10
def generate_traffic_summary():
year_start_date = datetime.today().replace(month=1, day=1, hour=0, minute=0, second=0, microsecond=0)
current_date = datetime.today()
current_year_hits = get_user_activities(year_start_date, current_date)
# generate monthly summary for current year
df_current_year_hits = pd.json_normalize(current_year_hits)
df_current_year_hits = df_current_year_hits[['_id', '_source.user_email', '_source.timestamp']]
df_current_year_hits = df_current_year_hits.rename(columns={'_id': 'id', '_source.user_email': 'email', '_source.timestamp': 'timestamp'})
#replace none or null or nan to empty string
df_current_year_hits.fillna('', inplace=True)
#convert the email column to category - either registered user or visitor
df_current_year_hits['user_type'] = df_current_year_hits.apply(lambda x: 'visitor' if x['email'] == '' else 'registered user', axis=1)
# Convert timestamp to datetime object
df_current_year_hits['timestamp'] = pd.to_datetime(df_current_year_hits['timestamp'], format='ISO8601')
# Create a new column for the month
df_current_year_hits['month'] = df_current_year_hits['timestamp'].dt.month_name()
# Group the data by month and count the ID's
grouped_df = df_current_year_hits.groupby(['user_type','month'])['id'].size()
result_df = pd.DataFrame(grouped_df).reset_index().rename(columns={'id': 'count'})
result_df_registered_users = result_df.loc[result_df['user_type'] == 'registered user']
result_df_registered_users = result_df_registered_users[['month', 'count']]
result_df_registered_users.set_index('month', inplace = True)
result_df_visitors = result_df.loc[result_df['user_type'] == 'visitor']
result_df_visitors = result_df_visitors[['month', 'count']]
result_df_visitors.set_index('month', inplace = True)
# Handling months with no data
all_months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
result_df_registered_users = result_df_registered_users.reindex(all_months).fillna(0).reset_index()
result_df_visitors = result_df_visitors.reindex(all_months).fillna(0).reset_index()
current_year_traffic_registered_users = result_df_registered_users['count'].tolist()
current_year_traffic_visitors = result_df_visitors['count'].tolist()
return current_year_traffic_registered_users, current_year_traffic_visitors
import random
from time import mktime as mktime
from time import strptime, strftime, localtime
def str_time_prop(start, end, time_format, prop):
"""Get a time at a proportion of a range of two formatted times.
start and end should be strings specifying times formatted in the
given format (strftime-style), giving an interval [start, end].
prop specifies how a proportion of the interval to be taken after
start. The returned time will be in the specified format.
"""
stime = mktime(strptime(start, time_format))
etime = mktime(strptime(end, time_format))
ptime = stime + prop * (etime - stime)
return strftime(time_format, localtime(ptime))
def random_date(start, end, prop):
return str_time_prop(start, end, '%Y-%m-%dT%H:%M:%SZ', prop)
def add_user(user):
es_client.index(
index=ES_Index.users.name,
document={
"first_name": user.first_name,
"last_name": user.last_name,
"email": user.email,
"password_hash": user.password_hash,
"timestamp_created": datetime.now(timezone.utc),
# "timestamp_created": random_date("2024-01-01T00:00:00Z", "2024-10-20T00:00:00Z", random.random()), # this was done when we had to generate test data in dev environment
"oauth_source": user.oauth_source,
"included_data_sources": '; '.join(current_app.config['DATA_SOURCES'].keys()), #by default add all the data sources to the included list.
"excluded_data_sources": user.excluded_data_sources, #by default this should be empty
}
)
def update_user(user):
es_client.update(
index=ES_Index.users.name,
id=user.id,
doc={
"first_name": user.first_name,
"last_name": user.last_name,
# "email": user.email,
"timestamp_updated": datetime.now(timezone.utc),
"oauth_source": user.oauth_source,
}
)
def get_user_by_id(user):
try:
hit = es_client.get(index=ES_Index.users.name, id=user.id)
# user.id = hit['_id']
user.first_name = hit["_source"].get('first_name','')
user.last_name = hit["_source"].get('last_name','')
user.email = hit["_source"].get('email','')
user.password_hash = hit["_source"].get('password_hash','')
user.oauth_source = hit["_source"].get('oauth_source','')
user.included_data_sources = hit["_source"].get("included_data_sources",'')
user.excluded_data_sources = hit["_source"].get("excluded_data_sources",'')
return user
except exceptions.NotFoundError:
return None
except:
return None
def get_user_by_email(user):
result = es_client.search(index=ES_Index.users.name, query={"match": {"email": {"query": user.email}}})
result_rec_count = int(result["hits"]["total"]["value"])
if result_rec_count == 1:
hit = result["hits"]["hits"][0]
user.id = hit['_id']
user.first_name = hit["_source"].get('first_name','')
user.last_name = hit["_source"].get('last_name','')
user.email = hit["_source"].get('email','')
user.password_hash = hit["_source"].get('password_hash','')
user.oauth_source = hit["_source"].get('oauth_source','')
user.included_data_sources = hit["_source"].get("included_data_sources",'')
user.excluded_data_sources = hit["_source"].get("excluded_data_sources",'')
return (True, user)
else:
return (False, user)
def update_user_preferences_data_sources(user):
es_client.update(
index=ES_Index.users.name,
id=user.id,
doc={
"included_data_sources": user.included_data_sources,
"excluded_data_sources": user.excluded_data_sources,
"timestamp_updated": datetime.now(timezone.utc),
}
)
def get_users(start_date, end_date):
start_date, end_date = parse_date_range_for_elastic(start_date, end_date)
# result = es_client.search(index=ES_Index.users.name, query={"match": {"first_name": {"query": "first"}}}, size=100, sort=[{ "timestamp_created" : "asc" }])
result = es_client.search(index=ES_Index.users.name,
size=10000,
query = {
"range": {
"timestamp_created": {
"gte":start_date,
"lte":end_date,
}
}
},
sort=[{ "timestamp_created" : "desc" }])
return result["hits"]["hits"]
def delete_user(user_id:str):
es_client.delete(index=ES_Index.users.name, id=user_id)
#endregion
#region DECORATORS
from functools import wraps
from time import time
import inspect
import os
def timeit(f):
@wraps(f)
def decorated_function(*args, **kwargs):
ts = time()
result = f(*args, **kwargs)
te = time()
filename = os.path.basename(inspect.getfile(f))
# print('file:%r func:%r took: %2.4f sec' % (filename, f.__name__, te-ts))
log_event(type="info", filename=filename, method=f.__name__, message=f"execution time: {(te-ts):2.4f} sec")
return result
return decorated_function
def handle_exceptions(f):
@wraps(f)
def decorated_function(*args, **kwargs):
try:
ts = time()
result = f(*args, **kwargs)
te = time()
filename = os.path.basename(inspect.getfile(f))
log_event(type="info", filename=filename, method=f.__name__, message=f"execution time: {(te-ts):2.4f} sec")
return result
except Exception as ex:
filename = os.path.basename(inspect.getfile(f))
log_event(type="error", filename=filename, method=f.__name__, message=str(ex), traceback= traceback.format_exc())
return decorated_function
def set_cookies(f):
@wraps(f)
def decorated_function(*args, **kwargs):
# first set the session id
if request.cookies.get('session') is None:
session_id = str(uuid.uuid4())
else:
session_id = request.cookies['session']
session['gateway-session-id'] = session_id
if current_user.is_authenticated:
session["current-user-email"] = current_user.email
response = f(*args, **kwargs)
log_agent()
log_activity(f"loading route: {f.__name__}")
# Set 'nfdi4ds-gateway-search-session' cookie to the session_id
# response.set_cookie('session', session_id)
return response
return decorated_function
#endregion