-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathReifier.fs
789 lines (733 loc) · 33.4 KB
/
Reifier.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/// <summary>
/// The part of the Starling process that performs the
/// backend-agnostic (in theory) part of reification.
/// </summary>
module Starling.Reifier
open Chessie.ErrorHandling
open Starling.Collections
open Starling.Utils
open Starling.Core.Definer
open Starling.Core.Expr
open Starling.Core.View
open Starling.Core.Var
open Starling.Core.Model
open Starling.Core.Command
open Starling.Core.GuardedView
open Starling.Core.Symbolic
open Starling.Core.Symbolic.Traversal
open Starling.Core.Traversal
open Starling.Core.TypeSystem
open Starling.TermGen.Iter
[<AutoOpen>]
module Types =
/// <summary>
/// Errors that can be returned by the reifier.
/// </summary>
type Error =
/// <summary>
/// An iterated view definition failed the inductive downclosure
/// property.
///
/// <para>
/// This is the property that, if a view definition holds for
/// a given iterator <c>n + 1</c>, it holds for the iterator
/// <c>n</c>. These two instances of the definition are called
/// <c>sdef</> and <c>bdef</c> below.
/// </para>
/// </summary>
| InductiveDownclosureError of view : DView * sdef : BoolExpr<Sym<Var>>
* bdef : BoolExpr<Sym<Var>>
/// <summary>
/// An iterated view definition failed the base downclosure
/// property with regards to the given definition of 'emp'.
///
/// <para>
/// This is the property that a view definition, when
/// instantiated with iterator <c>0</c>, is no stronger than
/// the definition for <c>emp</c> if any.
/// </para>
/// </summary>
| BaseDownclosureError of view : DView * def : BoolExpr<Sym<Var>>
* emp : BoolExpr<Sym<Var>>
/// <summary>
/// An iterated view definition contains more than one iterated
/// func.
///
/// <para>
/// This restriction is very conservative, and will probably
/// be relaxed in the future.
/// </para>
/// </summary>
| TooManyIteratedFuncs of view : DView * amount : int
/// <summary>
/// An iterated func is being used in a non-iterated manner.
/// </summary>
| NoIteratorOnIterated of func : IteratedDFunc
/// <summary>
/// An non-iterated func is being used in an iterated manner.
/// </summary>
| IteratorOnNonIterated of func : IteratedDFunc
/// <summary>
/// A definition contains both iterated and non-iterated funcs.
///
/// <para>
/// This restriction is very conservative, and will probably
/// be relaxed in the future.
/// </para>
/// </summary>
| MixedFuncType of view : DView
/// <summary>
/// A view occurred in a constraint that does not exist.
///
/// <para>
/// Usually this will be caught earlier on, but this is here
/// to make sure.
/// </para>
/// </summary>
| NoSuchView of func : DFunc
/// <summary>
/// A view lookup failed during downclosure checking.
///
/// <para>
/// Usually this will be caught earlier on, but this is here
/// to make sure.
/// </para>
/// </summary>
| LookupError of func : DFunc * err : Core.Definer.Error
/// <summary>
/// An iterator had the wrong type.
/// </summary>
| BadIteratorType of view : DView * ty : Type
/// <summary>
/// An iterator was missing where there should have been one.
/// </summary>
| MissingIterator of view : DView
/// <summary>
/// An expression traversal went belly-up.
/// </summary>
| Traversal of TraversalError<Error>
/// <summary>
/// Downclosure checking.
///
/// <para>
/// The presence of this in the reifier is a marriage of convenience.
/// Later, we might separate it.
/// </para>
/// </summary>
module Downclosure =
open Starling.Core.ExprEquiv
open Starling.Core.Traversal
/// <summary>
/// Adapts Instantiate.lookup to the downclosure checker's needs.
/// </summary>
/// <param name="protos">The set of prototypes to look-up.</param>
/// <param name="func">The func to look up in the definer.</param>
/// <returns>
/// If the lookup was successful, a result containing the prototype info
/// of <paramref name="func"/> if it exists; an <see cref="Error"/>
/// otherwise.
/// </returns>
let lookupFunc (protos : FuncDefiner<ProtoInfo>) (func : DFunc)
: Result<ProtoInfo option, Error> =
// TODO(CaptainHayashi): merge with Modeller.lookupFunc?
let look func = Core.Definer.FuncDefiner.lookup func protos
let record = wrapMessages LookupError look func
lift (Option.map snd) record
/// <summary>Type of downclosure check results.</summary>
type DownclosureResult =
| /// <summary>Downclosure has been proven.</summary>
Proven
| /// <summary>Downclosure has been refuted.</summary>
Refuted
| /// <summary>Downclosure cannot be decided: reason given.</summary>
Inconclusive of reason : string
/// <summary>
/// Runs a downclosure check using Z3.
/// </summary>
/// <param name="check">The check to run.</param>
/// <returns>
/// The result of the downclosure check.
/// </returns>
let runDownclosureCheck (check : BoolExpr<Sym<Var>>) : DownclosureResult =
// Expression equivalence cannot handle symbols, so try remove them.
// If we can't, then we just kick downclosure down to the backend.
// TODO(CaptainHayashi): is it sound to approximate here?
let removeResult =
mapTraversal
(removeSymFromBoolExpr id)
(mkTypedSub normalRec check)
match removeResult with
// If check is a tautology, it will be equivalent to 'true'.
| Pass r ->
if equivHolds id (equiv BTrue r) then Proven else Refuted
| _ -> Inconclusive "check is symbolic"
/// <summary>
/// Checks the base downclosure property.
/// <para>
/// This states that, for all iterated views <c>A(x)[n]</c>,
/// <c>D(emp) => D(A(x)[0])</c>: their definitions are no stronger
/// than that of the empty view. If there is no <c>D(emp)</c>, we
/// instead must prove <c>D(A(x)[0])</c> is a tautology.
/// </para>
/// </summary>
/// <param name="empDefn">The empty-view definition, <c>D(emp)</c>.</param>
/// <param name="iterator">The iterator variable, <c>n</c>.</param>
/// <param name="func">The iterated func to check, <c>A(x)[n]</c>.</param>
/// <param name="defn">The definition to check, <c>D(A(x)[n])</c>.</param>
/// <param name="deferred">The log of existing deferred checks.</param>
/// <returns>
/// The original definition if base downclosure holds; an error
/// otherwise.
/// </returns>
let checkBaseDownclosure
(empDefn : BoolExpr<Sym<Var>> option)
(iterator : Var)
(func : IteratedDFunc)
(defn : BoolExpr<Sym<Var>>)
(deferred : DeferredCheck list)
: Result<DeferredCheck list, Error> =
(* To do the base downclosure, we need to replace all instances of the
iterator in the definition with 0. *)
let baseDefnR =
mapMessages Traversal
(mapOverIteratorUses (fun _ -> IInt 0L) iterator defn)
// If emp is indefinite (None), defer this base downclosure check.
match empDefn with
| None ->
ok (NeedsBaseDownclosure (func, Some defn, "emp is indefinite")::deferred)
| Some ed ->
(* Base downclosure for a view V[n](x):
D(emp) => D(V[0](x))
That is, the definition of V when the iterator is 0 can be no
stricter than the definition of emp.
The definition of emp can only mention global variables, so it
need not need to be freshened. *)
let checkR = lift (mkImplies ed) baseDefnR
let baseHoldsR = lift runDownclosureCheck checkR
bind
(fun baseHolds ->
match baseHolds with
| Proven -> ok deferred
| Refuted -> fail (BaseDownclosureError ([func], defn, ed))
| Inconclusive reason ->
ok (NeedsBaseDownclosure (func, Some defn, reason)::deferred))
baseHoldsR
/// <summary>
/// Checks the inductive downclosure property.
/// <para>
/// This states that, for all iterated views <c>A(x)[n]</c>,
/// for all positive <c>n</c>, <c>D(A(x)[n+1]) => D(A(x)[n])</c>:
/// iterated view definitions must be monotonic over the iterator.
/// This, coupled with base downclosure, allows us to consider only
/// the highest iterator of an iterated func during reification,
/// instead of needing to take all funcs with an iterator less than
/// or equal to it.
/// </para>
/// </summary>
/// <param name="iterator">The iterator variable, <c>n</c>.</param>
/// <param name="func">The iterated func to check, <c>A(x)[n]</c>.</param>
/// <param name="defn">The definition to check, <c>D(A(x)[n])</c>.</param>
/// <param name="deferred">The log of existing deferred checks.</param>
/// <returns>
/// The original definition if inductive downclosure holds; an error
/// otherwise.
/// </returns>
let checkInductiveDownclosure (iterator : Var)
(func : IteratedDFunc)
(defn : BoolExpr<Sym<Var>>)
(deferred : DeferredCheck list)
: Result<DeferredCheck list, Error> =
(* To do the inductive downclosure, we need to replace all instances of
the iterator in the definition with (iterator + 1) in one version. *)
let succDefnR =
mapMessages Traversal
(mapOverIteratorUses (Reg >> incVar) iterator defn)
(* Inductive downclosure for a view V[n](x):
(0 <= n && D(V[n+1](x)) => D(V[n](x)))
That is, the definition of V when the iterator is n+1 implies the
definition of V when the iterator is n, for all positive n. *)
let checkR =
lift
(fun succDefn ->
mkImplies
(mkAnd2
(mkIntLe (IInt 0L) (IVar (Reg iterator)))
succDefn)
defn)
succDefnR
let indHoldsR = lift runDownclosureCheck checkR
bind2
(fun succDefn indHolds ->
match indHolds with
| Proven -> ok deferred
| Refuted -> fail (InductiveDownclosureError ([func], succDefn, defn))
| Inconclusive reason ->
ok (NeedsInductiveDownclosure (func, Some defn, reason)::deferred))
succDefnR
indHoldsR
/// <summary>
/// Checks the base and inductive downclosure properties on a given
/// arity-1 view definition.
/// </summary>
/// <param name="func">The view definition's lone defined func.</param>
/// <param name="empDefn">The definition of 'emp', if one exists.</param>
/// <param name="defn">The definition of <paramref name="func"/>.</param>
/// <param name="deferred">The log of existing deferred checks.</param>
/// <returns>
/// The set of deferred downclosure checks, if the non-deferred ones
/// passed; an error stating which property failed, otherwise.
/// </returns>
let checkDownclosure (func : IteratedDFunc)
(empDefn : BoolExpr<Sym<Var>> option)
(defn : BoolExpr<Sym<Var>> option)
(deferred : DeferredCheck list)
: Result<DeferredCheck list, Error> =
let checkIterator =
function
| None -> fail (MissingIterator [func])
| Some (Int (_, v)) -> ok v
| Some v -> fail (BadIteratorType ([func], typeOf v))
(* Delegate any checks on indefinite viewdefs to the backends, eg HSF
and MuZ3, which must make sure their synthesised definitions are
downclosed. *)
match defn with
| None ->
ok
(NeedsBaseDownclosure (func, None, "func is indefinite")
:: NeedsInductiveDownclosure (func, None, "func is indefinite")
:: deferred)
| Some d ->
let checkedIterR = checkIterator func.Iterator
bind
(fun checkedIter ->
let baseDeferredR =
checkBaseDownclosure empDefn checkedIter func d deferred
bind
(fun baseDeferred ->
checkInductiveDownclosure checkedIter func d
baseDeferred)
baseDeferredR)
checkedIterR
/// <summary>
/// Performs iterated view well-formedness checking on the left of a
/// view definition.
/// </summary>
/// <param name="empDefn">The definition, if any, of 'emp'.</param>
/// <param name="vprotos">The view prototypes in use.</param>
/// <param name="def">The definition being checked.</param>
/// <param name="deferred">The log of existing deferred checks.</param>
/// <returns>
/// The new deferred log if all testable checks passed;
/// errors otherwise.
/// </returns>
let checkDef
(empDefn : BoolExpr<Sym<Var>> option)
(vprotos : FuncDefiner<ProtoInfo>)
(def : DView * BoolExpr<Sym<Var>> option)
(deferred : DeferredCheck list)
: Result<DeferredCheck list, Error> =
let (lhs, rhs) = def
(* First, we check the uses of the views in the lhs to see which
are iterated in the definition. *)
let iterprotos, normprotos =
List.partition (fun func -> func.Iterator <> None) lhs
(* Now, check that each iterated use matches up with an iterated
prototype, and vice versa. *)
let checkIterAgree shouldBeIterated error ifunc =
let iInfoResult = lookupFunc vprotos ifunc.Func
bind
(function
| Some { IsIterated = ii } when ii = shouldBeIterated ->
ok ifunc
| Some _ -> fail (error ifunc)
| None -> fail (NoSuchView ifunc.Func))
iInfoResult
let iterProtoCheckedResult =
collect (Seq.map (checkIterAgree true IteratorOnNonIterated) iterprotos)
let normProtoCheckedResult =
collect (Seq.map (checkIterAgree false NoIteratorOnIterated) normprotos)
bind2
(fun ips nps ->
match (ips, nps) with
(* Correct non-iterated view definition.
No more checking necessary. *)
| [], _ -> ok deferred
(* Correct iterated view definition, as long as i is actually an
iterated func.
Need to check inductive and base downclosure. *)
| [i], [] ->
checkDownclosure i empDefn rhs deferred
// Over-large iterated view definition (for now, anyway).
| xs, [] -> fail (TooManyIteratedFuncs (lhs, List.length xs))
// Mixed view definition (currently not allowed).
| _, _ -> fail (MixedFuncType lhs))
iterProtoCheckedResult
normProtoCheckedResult
/// <summary>
/// Performs all downclosure and well-formedness checking on iterated
/// constraints.
/// </summary>
/// <param name="vprotos">The view prototypes in use.</param>
/// <param name="definer">
/// The definer whose constraints are being checked.
/// </param>
/// <param name="deferred">The log of existing deferred checks.</param>
/// <returns>
/// The new deferred log if all testable checks passed;
/// errors otherwise.
/// </returns>
let check
(vprotos : FuncDefiner<ProtoInfo>)
(definer : ViewDefiner<BoolExpr<Sym<Var>> option>)
(deferred : DeferredCheck list)
: Result<DeferredCheck list, Error> =
(* Get the definition of 'emp'.
This is needed for base downclosure checking.
There are three possibilities here:
1) emp is defined, in which case we use the definition;
2) emp is not defined, in which case we assume 'true' by the theory;
3) emp is indefinite, in which case we pass None to 'checkDef' and
'checkDef' then has to defer any base downclosure checks. *)
let defSeq = ViewDefiner.toSeq definer
let empDefIfDefined =
Option.map snd (Seq.tryFind (fst >> List.isEmpty) defSeq)
// Deal with case 2).
let empDefn = withDefault (Some BTrue) empDefIfDefined
// TODO (CaptainHayashi): actually use the result here
seqBind (checkDef empDefn vprotos) deferred defSeq
/// Splits an iterated GFunc into a pair of guard and iterated func.
let iterGFuncTuple
({ Iterator = i; Func = { Cond = c; Item = f }} : IteratedGFunc<'Var>)
: BoolExpr<'Var> * IteratedContainer<Func<Expr<'Var>>, IntExpr<'Var>> =
(c, iterated f i)
/// <summary>
/// Generates the powerset of a set expressed as a list.
/// </summary>
/// <param name="xs">The set whose powerset is sought.</param>
/// <typeparam name="A">The type of set elements.</typeparam>
/// <returns>
/// The powerset of <paramref name="xs"/>, as a lazy sequence.
/// </returns>
let rec powerset (xs : 'A list) : 'A list seq =
// originally by Tomas Petricek: see http://stackoverflow.com/a/16826554
seq {
match xs with
| [] -> yield []
| h::t -> for x in powerset t do yield! [x; h::x] }
/// <summary>
/// Given a series of iterated funcs
/// <c>A(a)[i] * A(b)[j] * A(c)[k] * ...</c>, generate the equalities
/// <c>a==b, a==c, ...</c>.
/// </summary>
/// <param name="flist">The NON-EMPTY list of funcs to generate over.</param>
/// <returns>The series of parameter equalities described above.</returns>
let paramEqualities (flist : IteratedFunc<Sym<MarkedVar>> list)
: BoolExpr<Sym<MarkedVar>> list =
let x = List.head flist
concatMap
(fun y -> List.map2 mkEq x.Func.Params y.Func.Params)
(List.tail flist)
/// <summary>
/// Preprocesses a view for reification.
///
/// <para>
/// This function converts a view multiset into a list, and expands out
/// any case splits over potentially-equal iterated funcs:
/// for example, <c>(G1 -> A(x)[i]) * (G2 -> A(y)[j])</c> will also
/// generate the func <c>(G1 ^ G2 ^ x=y -> A(x)[i+j])</c> when
/// A(x) is iterated.
/// </para>
/// </summary>
/// <param name="protos">The prototypes used to find iterated funcs.</param>
/// <param name="view">The view to preprocess.</param>
/// <returns>The preprocessed view, as a func list.</returns>
let preprocessView
(protos : FuncDefiner<ProtoInfo>)
(view : IteratedGView<Sym<MarkedVar>>)
: IteratedGFunc<Sym<MarkedVar>> list =
(* First of all, find out which view prototypes are marked (i)terated,
and which are (n)ot. We assume func names are unique and all func
references are well-formed (correct set of parameters), which should have
been checked earlier. *)
let ifuncs, nfuncs =
protos
|> FuncDefiner.toSeq
|> Seq.fold
(fun (is, ns) (func, pinfo) ->
if pinfo.IsIterated
then (Set.add func.Name is, ns)
else (is, Set.add func.Name ns))
(Set.empty, Set.empty)
(* Now, go through the multiset's funcs. Since the multiset may contain
n copies of a k-iterated func, we normalise to one copy of a k*n-iterated
func to get rid of the outer iterator. What we then do depends on
whether the func is iterated or not: if it isn't, we just emit it;
otherwise, we add it to an equivalence class based on the func name so
we can do the case-split expansion. *)
let expandFuncToReify
(ns, ic : Map<string, IteratedGFunc<Sym<MarkedVar>> list>) func n =
let norm = TermGen.normalise func n
let nname = norm.Func.Item.Name
if ifuncs.Contains nname
then (ns, Map.add nname (norm::ic.[nname]) ic)
else (norm::ns, ic)
(* Have to make sure each class exists first; else exceptions happen.
This is the role of icempty, which creates a map with each equivalence
class present but empty. *)
let emptyClasses = ifuncs |> Seq.map (fun name -> (name, [])) |> Map.ofSeq
(* Now we collect into nlist the non-iterated funcs in the view, and
simultaneously populate the empty equivalence classes such that each
instance of a func with a specific name is collected into the same
class. *)
let nlist, iclasses =
Multiset.fold expandFuncToReify ([], emptyClasses) view
(* Now, go through the equivalence classes to calculate their case-split
expansion. We do this by working out every single possible set of
equalities between the funcs in the class: say, for
G1->A(a)[i] * G2->A(b)[j] * G3->A(c)[k]
we have the cases (), (a=b), (a=c), (b=c), (a=b && a=c). This turns out
to be the powerset of the class, less the empty set, where each element
of the powerset denotes equality between the members' parameters.
We don't need the map keys at this stage. *)
let iclassSeq = Map.toSeq iclasses
let iclassPowersets = Seq.map (snd >> powerset) iclassSeq
let ipsets = Seq.concat iclassPowersets
(* Finally, we need to convert those equivalence powersets into a list of
funcs. Each func represents an instance of one of the iterated funcs
in the original view where a number of funcs sharing that name have
been combined into one with the assertion that all of their parameters
are the same. *)
let mergeEqualitySet
(mergedSoFar : IteratedGFunc<Sym<MarkedVar>> list)
(equalitySet : IteratedGFunc<Sym<MarkedVar>> list) =
match equalitySet with
// Trivial cases first.
| [] -> mergedSoFar
| [func] -> func::mergedSoFar
(* Now we have a set of func G1->A(a)[i], G2->A(b)[j], G3->A(c)[k]...
first, calculate the new guard G1^G2^G3^a=b^a=c^... *)
| gfuncs ->
let guards, funcs =
gfuncs
|> List.map iterGFuncTuple
|> List.unzip
let equalities = paramEqualities funcs
let nguard = mkAnd (guards @ equalities)
// And the new iterator i+j+k+...
let iter = mkAdd (List.map (fun f -> f.Iterator) funcs)
{ Iterator = iter
Func = { Cond = nguard; Item = (List.head funcs).Func }}
:: mergedSoFar
Seq.fold mergeEqualitySet nlist ipsets
/// Calculate the multiset of ways that this View matches the pattern in dv and
/// add to the accumulator.
let reifySingleDef
(protos : FuncDefiner<ProtoInfo>)
(view : IteratedGFunc<Sym<MarkedVar>> list)
(accumulator : Set<GuardedIteratedSubview>)
(dv : DView, _)
: Set<GuardedIteratedSubview> =
(* When we finish, we need to pull all of the guards out of the funcs
we've matched, conjoin them, and use them to guard the iterated view
the funcs now form. These are then added to the accumulator. *)
let mergeResults results accumulator =
let guars, views = results |> List.map iterGFuncTuple |> List.unzip
let cond = mkAnd guars
if (isFalse cond)
then accumulator
else Set.add { Cond = cond; Item = List.rev views } accumulator
(* First, we define what it means to match a view against a single pattern
func p, given the rest of the pattern is in 'pattern'. *)
let rec matchSingleView
(p: IteratedDFunc)
pattern
(view : IteratedGFunc<Sym<MarkedVar>> list)
rview
accumulator
result =
match view with
| [] -> accumulator
| v :: view ->
(* This pattern matches if, and only if, the funcs match. *)
let pMatchesV =
p.Func.Name = v.Func.Item.Name
&& p.Func.Params.Length = v.Func.Item.Params.Length
(* Reification works by building up an accumulator of results from
performing multiple possible pattern matches. Because each
single view match case-splits based on whether or not we take
the match, we have to push lots of recursive match results into
our own accumulator. *)
let accumulator =
match p.Iterator, pMatchesV with
| (_, false) ->
// The view doesn't match, so this match is dead.
accumulator
| (None, true) ->
(* How many times does a non-iterated pattern A(x) match an
func (G1->A(y)[n])? (Note that the presence of an
iterator in that func does NOT necessarily make it an
iterated func: n could be 1, or 4, or 0, etc.)
Once, becoming (G1 && n>0 -> A(y)[1]). We must then put
(G1 && n>0 -> A(y)[n-1]) back onto the view to match.
But what if n is always 0? Then this pattern match
gets a false guard and, because we conjoin all the
pattern match guards above, it short-circuits to
false and kills off the entire view. *)
let nIsPos = mkIntGt v.Iterator (IInt 0L)
let func = { v.Func with Cond = mkAnd2 v.Func.Cond nIsPos }
let result =
{ Func = func; Iterator = IInt 1L } :: result
let view =
{ Func = func; Iterator = mkSub2 v.Iterator (IInt 1L) }
:: view
matchMultipleViews pattern (rview @ view) accumulator result
| (Some n, true) ->
(* How many times does an ITERATED pattern A(x)[i] match the
func (G1 -> A(y)[n])? As above, the answer is n.
Thus, no remnant is put onto the view, and the entire
func is put onto the result. *)
let result = v :: result
(* We also now match against all of the funcs we
refused earlier (rview). *)
matchMultipleViews pattern (rview @ view) accumulator result
(* Now consider the case where we didn't choose the match.
This function now goes onto the set of refused funcs that
are placed back into any match we do choose. *)
matchSingleView p pattern view (v :: rview) accumulator result
(* We can now specify what it means to reify a view against an entire
view pattern. *)
and matchMultipleViews
(pattern : DView)
(view : IteratedGFunc<Sym<MarkedVar>> list) accumulator result =
// TODO(CaptainHayashi): pattern vetting.
match pattern with
| [] -> mergeResults result accumulator
(* Because we preprocessed the view, in both iterated and non-iterated
cases we can simply traverse the view from left to right, and,
every time we find something matching the pattern, split on whether
we accept it.
Run the case where we do and feed its results into the accumulator,
then run the case where we don't with that accumulator. *)
| p :: pattern -> matchSingleView p pattern view [] accumulator result
matchMultipleViews dv view accumulator []
/// <summary>
/// Reifies a given view using the given view prototypes and definer.
/// </summary>
/// <param name="protos">The view prototype definer in use.</param>
/// <param name="definer">The set of view definitions to reify against.</param>
/// <param name="view">The view to reify.</param>
/// <returns>
/// The set of all 'subviews' of the <paramref name="view"/>: views that
/// both match a constraint in <paramref name="definer"/> and are a
/// sub-multiset of <paramref name="view"/>, guarded by the conjunction of
/// all of the original guards of each func inside the subview as well as
/// any additional conditions for the pattern match to succeed.
/// </returns>
let reifyView
(protos : FuncDefiner<ProtoInfo>)
(definer : ViewDefiner<SVBoolExpr option>)
(view : IteratedGView<Sym<MarkedVar>>)
: Set<GuardedIteratedSubview> =
let goal = preprocessView protos view
definer
|> ViewDefiner.toSeq
|> Seq.fold (reifySingleDef protos goal) Set.empty
/// Performs sanity checking on the model, possibly producing deferred checks.
let sanityCheckModel
(model : Model<Term<'a, IteratedGView<Sym<MarkedVar>>, IteratedOView>,
ViewDefiner<SVBoolExpr option>>)
: Result<Model<Term<'a, IteratedGView<Sym<MarkedVar>>, IteratedOView>,
ViewDefiner<SVBoolExpr option>>, Error> =
// Currently the only sanity check is downclosure.
let deferredCheckR =
Downclosure.check
model.ViewProtos
model.ViewDefs
model.DeferredChecks
lift (fun ds -> { model with DeferredChecks = ds }) deferredCheckR
/// Reifies all of the terms in a model's axiom list.
let reify
(model : Model<Term<'a, IteratedGView<Sym<MarkedVar>>, IteratedOView>,
ViewDefiner<SVBoolExpr option>>)
: Result<Model<Term<'a, Set<GuardedIteratedSubview>, IteratedOView>,
ViewDefiner<SVBoolExpr option>>, Error> =
let checkedModelR = sanityCheckModel model
lift
(mapAxioms (mapTerm id (reifyView model.ViewProtos model.ViewDefs) id))
checkedModelR
/// <summary>
/// Pretty printers for the reifier types.
/// </summary>
module Pretty =
open Starling.Core.Pretty
open Starling.Core.Expr.Pretty
open Starling.Core.Symbolic.Pretty
open Starling.Core.TypeSystem.Pretty
open Starling.Core.Var.Pretty
open Starling.Core.View.Pretty
open Starling.Core.Traversal.Pretty
/// <summary>
/// Pretty-prints an <see cref="Error"/>.
/// </summary>
let rec printError (err : Error) : Doc =
match err with
| InductiveDownclosureError (view, sdef, bdef) ->
headed "Iterated view does not satisfy inductive downclosure property"
[ errorInfo <|
headed "View being constrained"
[ printDView view ]
errorInfo <|
headed "Constraint failing inductive downclosure"
[ printBoolExpr (printSym printVar) bdef ]
headed "Constraint must be implied by the following"
[ errorInfo <| printBoolExpr (printSym printVar) sdef ] ]
| BaseDownclosureError (view, def, emp) ->
headed "Iterated view does not satisfy base downclosure property"
[ errorInfo <|
headed "View being constrained"
[ printDView view ]
errorInfo <|
headed "Constraint failing base downclosure"
[ printBoolExpr (printSym printVar) def ]
headed "Constraint must be no stronger than 'emp' when \
iterator is zero"
[ errorInfo <| printBoolExpr (printSym printVar) emp ] ]
| TooManyIteratedFuncs (view, count) ->
fmt "constraint '{0}' contains {1} iterated funcs, but iterated \
definitions can only contain at most one"
[ printDView view
String (sprintf "%i" count) ]
| MixedFuncType view ->
fmt "constraint '{0}' mixes iterated and non-iterated views"
[ printDView view ]
| NoSuchView name
-> fmt "no view prototype for '{0}'" [ printDFunc name ]
| LookupError(func, err) ->
wrapped "lookup for view"
(printDFunc func)
(err |> Core.Definer.Pretty.printError)
| NoIteratorOnIterated func ->
errorStr "view"
<+> quoted
(printIteratedContainer
printDFunc
(maybe Nop printTypedVar)
func)
<+> errorStr "is iterated, but used as non-iterated in a constraint"
| IteratorOnNonIterated func ->
errorStr "view"
<+> quoted
(printIteratedContainer
printDFunc
(maybe Nop printTypedVar)
func)
<+> errorStr "is not iterated, but used as iterated in a constraint"
| BadIteratorType (view, ty) ->
fmt "iterator on constraint '{0}' is of type {1}, should be int"
[ printDView view
printType ty ]
| MissingIterator view ->
fmt "constraint '{0}' should have an iterator, but does not"
[ printDView view ]
| Traversal err -> printTraversalError printError err
|> error