-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathserver.R
executable file
·271 lines (202 loc) · 12.3 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
## Hazmat Incident Anomaly Detection App (R + Shiny + Leaflet) for the U.S. Dept. of Transportation
## By Jude Calvillo (Data Science Working Group @ Code for San Francisco)
##
## Status: Oct. 22, 2016
## ---------------------
## v2.0 - Complete / Beta
##
## - ALL DONE. :) - Hazmat-related news results integrated as HTML + javascript and map interactivity
## now bug-free.
## - Next steps:
## > Update dataset and work with Dan @ DoT to get some kind of live/daily data feed.
## > Try to refine MS Cognitive Services API call for consistently more relevant news search results.
## > Try to create and employ a custom 'month picker' Shiny input object, as Shiny Apps does not offer
## a month picker widget or useful dateInput option. Some useful links...
## >> jQuery Month Picker: http://jsfiddle.net/kidsysco/JeZap/
## >> How to Build Custom Shiny Input Objects: http://shiny.rstudio.com/articles/building-inputs.html
## > Attempt to generalize this for MANY temporal-spatial civic anomaly detection purposes!!
##
## ----------------------------------
##
## Load necessary libraries.
library(shiny)
library(AnomalyDetection)
library(lubridate)
library(dplyr)
library(ggplot2)
library(jsonlite)
library(httr)
# library(maps) # Loading states map as object, instead, to save a little load time)
## Load R objects for API key (MS Cognitive Services) and map polygons.
## Reformatting names of map polygons for easier reference/matching.
load(file = "data/api_key.rda")
load(file = "data/mapStates.rda")
mapStates$names <- sub(":main","", mapStates$names)
# mapStates <- map("state", fill = TRUE, plot = FALSE) # Used only if loading from library
## Get the state-by-state incident data
dat <- read.csv("data/hazmat_year_month.csv")
## States lookup table (to deal w/maps subsetting issue).
## Also, it's faster to create than to load, apparently.
states_lookup <- data.frame()
states_lookup[1:50,] <- NA
states_lookup$State <- state.name
states_lookup$State.Abb <- state.abb
## Factorize state
dat$State <- as.factor(dat$State)
# Currently, in order to make this all work, we have to filter out those territories not in the
# states_lookup dataset (e.g. filtering out Puerto Rico). We can work out a solution for getting those
# later, if necessary.
## Get months and convert to Posix.
dat$Year.Month = as.POSIXct(strptime(dat$Year.Month, "%Y-%m-%d"))
## For later
dat2 <- data.frame(State = character(), Year.Month = as.POSIXlt(character()), Report.Number = integer())
## Create empty dataframe
res_df <- data.frame(timestamp = as.POSIXlt(character()), anoms = integer(), state = character())
## So as not to corrupt local testing
res_df2 <- data.frame()
## Pre-popped data frame, in line w/maps' "states" name ordering and proper shading in Leaflet
anom_map_states <- data.frame(State = character(), State.Abb = character(), Incidents = integer(),
Median = integer(), Low = integer(), High = integer())
anom_map_states[1:length(mapStates$names),] <- NA
anom_map_states$State <- mapStates$names
anom_map_states$State.Abb <- as.character(anom_map_states$State.Abb)
anom_map_states[anom_map_states$State %in% tolower(states_lookup$State), "State.Abb"] <- states_lookup[tolower(states_lookup$State) %in%
mapStates$names, "State.Abb"]
anom_map_states$Incidents <- 0
## Initiate Shiny Server instance.
shinyServer(
function(input, output){
## React to the selected date/month by subsetting to chosen month - 5 years before, then running
## anomaly detection and filtering to this month.
the_anoms <- reactive({
# par(mar=c(1,1,1,1))
## To format any date selected to the first of that month
## (for proper ref w/dataset) - Temp solution, until I can create a sort of 'month picker' for Shiny
the_first <- input$selectdate
day(the_first) <- 1
## Have to create 5 years back date as character because base won't take in
yrs_back_5 <- as.Date(the_first) - years(5)
dat2 <- dat[(dat$Year.Month >= as.character(yrs_back_5)) & (dat$Year.Month <= as.character(the_first)),]
## Run each state's data through anomaly detection
for(i in 1:length(levels(dat2$State))){
res <- AnomalyDetectionTs(dat2[dat2$State %in% levels(dat2$State)[i],c("Year.Month","Report.Number")], max_anoms=0.05,
direction='pos', plot=T)
per_state <- res$anom
per_state$state <- rep(levels(dat2$State)[i], nrow(per_state)) # Quick and dirty solution here.
res_df <- rbind(res_df, per_state)
}
names(res_df)[2:3] <- c("Incidents","State")
res_df2 <- res_df
## Filter to selected month's states.
res_df2 <- res_df2[res_df2$timestamp %in% as.character(the_first), c("State", "Incidents")]
if(nrow(res_df2) > 0){
sum_stats <- summarise(group_by(dat2[dat2$State %in% res_df2$State,], State), Median = median(Report.Number),
Low = min(Report.Number), High = max(Report.Number))
res_df2 <- cbind(res_df2, sum_stats[,-1])
}
res_df2
})
## Run selected state through anomaly detection and grab its individual plot (for selected month -> -5yrs)
anom_plot <- reactive({
if(is.null(input$theMAP_shape_click$id)){
wait_message <- paste("Awaiting state selection...")
ggplot() +
annotate("text", x = -5:0, y = 0:5, size=8, label = "") +
annotate("text", x = -2.5, y = 2.5, label = wait_message) +
theme_bw() + theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank()) +
xlab("Years (-5 ---> | Selected Year)") + ylab("Incidents")
} else {
## Lookup state abbreviation
selected_state <- states_lookup$State.Abb[tolower(states_lookup$State) %in% input$theMAP_shape_click$id]
## Reformat selected date to 1st of the month
the_first <- input$selectdate
day(the_first) <- 1
## Have to create 5 years back date as character because base won't take in
yrs_back_5 <- as.Date(the_first) - years(5)
dat2 <- dat[(dat$Year.Month >= as.character(yrs_back_5)) & (dat$Year.Month <= as.character(the_first)),]
## Run selected state's data through anomaly detection, to get plot.
state_anom <- AnomalyDetectionTs(dat2[dat2$State %in% selected_state, c("Year.Month","Report.Number")],
max_anoms=0.05, direction='pos', plot=T)
print(state_anom$plot)
}
})
## Get the news via API
the_news <- reactive({
if(is.null(input$theMAP_shape_click$id)){
print("Awaiting state selection...")
} else {
## Lookup state abbreviation
state_name <- states_lookup$State[tolower(states_lookup$State) %in% input$theMAP_shape_click$id]
## Format state to account for no-spaces allowed in request URL
state_name <- gsub(" ", "+", state_name)
## Test request URL
req_url <- paste0("https://api.cognitive.microsoft.com/bing/v5.0/news/search?q=", "hazardous+materials+accident|incident+", state_name, "+", year(input$selectdate),
"&count=100&offset=0&mkt=en-us&safeSearch=Moderate")
#&category=Health")
## API REQUEST for hazmat news @ state + month
req_content <- GET(url = req_url, add_headers("Ocp-Apim-Subscription-Key" = api_key, type = "basic"))
raw_content <- content(req_content, type = "text", encoding = "UTF-8")
news_content <- fromJSON(raw_content)par(mar=c(1,1,1,1))
## Convert to usable data frame
news_df <- as.data.frame(news_content[[4]])
news_df <- news_df[,c("name","description","url","datePublished","provider")]
news_df$datePublished <- as.Date(news_df$datePublished)
## Filter down to news of user-selected month
news_df$datePublished <- as.character(news_df$datePublished) # Because render table auto-converts dates to numeric
news_df <- news_df[floor_date(as.Date(news_df$datePublished), unit = "month")
%in% floor_date(as.Date(input$selectdate), unit = "month"),]
## Create HTML links (for later use) by applying paste0 across a few columns
news_df <- news_df[, c("name","datePublished","url")]
names(news_df)[2] <- "Date"
news_df <- cbind(news_df, "<a href='")
news_df <- cbind(news_df, "' style='color:#108aa0;font-weight:bold'>")
news_df <- cbind(news_df, "</a>")
news_df <- news_df[, c(4,3,5,1,6,2)]
news_df$Article <- apply(news_df[,-6], 1, paste0, collapse = "")
news_df[, c("Article","Date")]
}
})
## Show anomolous states
output$anonSTATES <- renderTable({the_anoms()}, include.rownames=FALSE)
## Show map
output$theMAP <- renderLeaflet({
## Replace zeroed out states dataframe w/anomalous states' values where states match
anom_map_states[anom_map_states$State.Abb %in% the_anoms()$State, -1] <- the_anoms()
## Polygons and layerIds from mapStates
leaflet(data = mapStates) %>% addTiles() %>%
addPolygons(fillColor = "#cc0000", fillOpacity = anom_map_states$Incidents * .01,
layerId = mapStates$names, stroke = FALSE)
})
## Render reactive anomaly plot heading UI
output$plotHEAD <- renderUI({
if(is.null(input$theMAP_shape_click$id)){
print(h4(style="color:#000000;", icon("clock-o", lib="font-awesome"), "Incident Timeline for State (Month - 5yrs)"))
} else {
print(h4(style="color:#000000;", icon("clock-o", lib="font-awesome"),
paste("Incident Timeline for", states_lookup$State[tolower(states_lookup$State) %in% input$theMAP_shape_click$id],
"(Month - 5yrs)")))
}
})
## Render timeline + anomalies plot for selected month
output$plotANOM <- renderPlot({anom_plot()}, height = 280)
## Render reactive news heading UI (reacts to selected state name)
output$newsHEAD <- renderUI({
if(is.null(input$theMAP_shape_click$id)){
print(h4(style="color:#000000;", icon("newspaper-o", lib="font-awesome"), "Hazmat News for Selected State @ Month"))
} else {
print(h4(style="color:#000000;", icon("newspaper-o", lib="font-awesome"),
paste("Hazmat News for", states_lookup$State[tolower(states_lookup$State) %in% input$theMAP_shape_click$id], "@ Month")))
}
})
## Render reactive news content in HTML-enabled table
output$newsCONTENT <- renderDataTable({
if(is.null(input$theMAP_shape_click$id)){
news_temp <- as.data.frame("Awaiting state selection")
names(news_temp) <- "Article"
print(news_temp)
} else {
the_news()
}
}, escape = F, options = list(paging = F, searching = F)) # disabled search/filtering and pagination, for now
}
)