From bfcadde5c36a5ebd48de4a0cb253214ae890f862 Mon Sep 17 00:00:00 2001 From: shadowcz007 Date: Sat, 17 Aug 2024 14:22:31 +0800 Subject: [PATCH] update --- __init__.py | 60 ++ ...50\265\233\346\250\241\346\235\277_4.json" | 1 - example/Image-to-Image_2.json | 1 - example/Text-to-Image_3.json | 704 ------------------ pyproject.toml | 2 +- web/javascript/3d_mixlab.js | 37 +- web/javascript/app_mixlab.js | 62 +- web/javascript/chat.js | 100 ++- web/javascript/command.js | 697 ----------------- web/javascript/common.js | 168 +++++ web/javascript/main_mixlab.js | 94 +-- web/javascript/ui_mixlab.js | 317 ++++---- web/javascript/utils_mixlab.js | 84 +-- workflow/5-gpt-workflow.json | 631 ---------------- workflow/6-gpt-all-workflow.json | 251 ------- 15 files changed, 546 insertions(+), 2663 deletions(-) delete mode 100644 "example/AIPC\345\244\247\350\265\233\346\250\241\346\235\277_4.json" delete mode 100644 example/Image-to-Image_2.json delete mode 100644 example/Text-to-Image_3.json delete mode 100644 web/javascript/command.js create mode 100644 web/javascript/common.js delete mode 100644 workflow/5-gpt-workflow.json delete mode 100644 workflow/6-gpt-all-workflow.json diff --git a/__init__.py b/__init__.py index 1251118f..c33b3913 100644 --- a/__init__.py +++ b/__init__.py @@ -32,6 +32,7 @@ # except: # print("##nodes.ChatGPT ImportError") +from .nodes.ChatGPT import openai_client from .nodes.RembgNode import get_rembg_models,U2NET_HOME,run_briarmbg,run_rembg @@ -584,6 +585,65 @@ async def mixlab_hander(request): print(e) return web.json_response(data) +# llm的api key,使用硅基流动 +@routes.post('/mixlab/llm_api_key') +async def mixlab_llm_api_key_handler(request): + data = await request.json() + api_key = data.get('key') + + app_folder = os.path.join(current_path, "app") + key_file_path = os.path.join(app_folder, "llm_api_key.txt") + + if api_key: + if not os.path.exists(app_folder): + os.makedirs(app_folder) + try: + with open(key_file_path, 'w') as f: + f.write(api_key) + return web.json_response({'message': 'API key saved successfully'}) + except Exception as e: + return web.json_response({'error': str(e)}, status=500) + else: + if os.path.exists(key_file_path): + try: + with open(key_file_path, 'r') as f: + saved_api_key = f.read().strip() + return web.json_response({'key': saved_api_key}) + except Exception as e: + return web.json_response({'error': str(e)}, status=500) + else: + return web.json_response({'error': 'No API key provided and no key found in local storage'}, status=400) + + +@routes.post('/chat/completions') +async def chat_completions(request): + data = await request.json() + messages = data.get('messages') + key=data.get('key') + if not messages: + return web.json_response({"error": "No messages provided"}, status=400) + + async def generate(): + try: + client=openai_client(key,"https://api.siliconflow.cn/v1") + + response = client.chat.completions.create( + model="01-ai/Yi-1.5-9B-Chat-16K", + messages=messages, + stream=True + ) + + for chunk in response: + if hasattr(chunk.choices[0].delta, 'content'): + content = chunk.choices[0].delta.content + if content is not None: + yield content.encode('utf-8') + b"\r\n" + + except Exception as e: + yield f"Error: {str(e)}".encode('utf-8') + b"\r\n" + + return web.Response(body=generate(), content_type='text/event-stream') + @routes.get('/mixlab/app') async def mixlab_app_handler(request): diff --git "a/example/AIPC\345\244\247\350\265\233\346\250\241\346\235\277_4.json" "b/example/AIPC\345\244\247\350\265\233\346\250\241\346\235\277_4.json" deleted file mode 100644 index b5468e7e..00000000 --- "a/example/AIPC\345\244\247\350\265\233\346\250\241\346\235\277_4.json" +++ /dev/null @@ -1 +0,0 @@ -{"workflow": {"last_node_id": 128, "last_link_id": 207, "nodes": [{"id": 8, "type": "PreviewImage", "pos": [2521.460559703692, -1587.2180470095893], "size": {"0": 210, "1": 246}, "flags": {}, "order": 18, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 14}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 14, "type": "PreviewImage", "pos": [2535.460559703692, -1204.2180470095905], "size": {"0": 210, "1": 246}, "flags": {}, "order": 21, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 17}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 7, "type": "LoadImagesFromURL", "pos": [1711.42830256307, -1599.3206325408398], "size": {"0": 400, "1": 200}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "images", "type": "IMAGE", "links": [12, 119, 128], "shape": 6, "slot_index": 0}, {"name": "masks", "type": "MASK", "links": [13, 117], "shape": 6, "slot_index": 1}], "title": "# 3-4", "properties": {"Node name for S&R": "LoadImagesFromURL"}, "widgets_values": ["https://www.mixcomfy.com/assets/images/AIPC3-4.png"]}, {"id": 11, "type": "LoadImagesFromURL", "pos": [1695.4605597036943, -1264.2180470095902], "size": {"0": 400, "1": 200}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "images", "type": "IMAGE", "links": [15, 124, 129], "shape": 6, "slot_index": 0}, {"name": "masks", "type": "MASK", "links": [16, 125], "shape": 6, "slot_index": 1}], "title": "# 9-16", "properties": {"Node name for S&R": "LoadImagesFromURL"}, "widgets_values": ["https://www.mixcomfy.com/assets/images/AIPC9-16.png"]}, {"id": 55, "type": "GetImageSize_", "pos": [3005.974020506248, -1121.2566086687507], "size": {"0": 210, "1": 46}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 128}], "outputs": [{"name": "width", "type": "INT", "links": [79], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [80], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 70, "type": "GetImageSize_", "pos": [2996.974020506248, -938.2566086687494], "size": {"0": 210, "1": 46}, "flags": {}, "order": 11, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 129}], "outputs": [{"name": "width", "type": "INT", "links": [120], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [121], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 71, "type": "GetImageSize_", "pos": [2998.974020506248, -734.2566086687494], "size": {"0": 210, "1": 46}, "flags": {}, "order": 13, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 130}], "outputs": [{"name": "width", "type": "INT", "links": [122], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [123], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 49, "type": "NewLayer", "pos": [3301.974020506248, -1186.2566086687507], "size": {"0": 210, "1": 262}, "flags": {}, "order": 17, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 119}, {"name": "mask", "type": "MASK", "link": 117}, {"name": "layers", "type": "LAYER", "link": null}, {"name": "canvas", "type": "IMAGE", "link": null}, {"name": "width", "type": "INT", "link": 79, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 80, "widget": {"name": "height"}}], "outputs": [{"name": "layers", "type": "LAYER", "links": [113], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [0, 0, 512, 512, 1, "width", ""]}, {"id": 68, "type": "NewLayer", "pos": [3322.974020506248, -877.2566086687494], "size": {"0": 210, "1": 262}, "flags": {}, "order": 20, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 124}, {"name": "mask", "type": "MASK", "link": 125}, {"name": "layers", "type": "LAYER", "link": null}, {"name": "canvas", "type": "IMAGE", "link": null}, {"name": "width", "type": "INT", "link": 120, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 121, "widget": {"name": "height"}}], "outputs": [{"name": "layers", "type": "LAYER", "links": [114], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [0, 0, 512, 512, 1, "width", ""]}, {"id": 76, "type": "PreviewImage", "pos": [3488.369251598011, -1663.088123668324], "size": {"0": 210, "1": 246}, "flags": {}, "order": 26, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 142}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 58, "type": "NewLayer", "pos": [3689.974020506248, -1178.2566086687507], "size": {"0": 210, "1": 262}, "flags": {}, "order": 28, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 92}, {"name": "mask", "type": "MASK", "link": 85}, {"name": "layers", "type": "LAYER", "link": 113}, {"name": "canvas", "type": "IMAGE", "link": 88}], "outputs": [{"name": "layers", "type": "LAYER", "links": [131], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [968, 1381, 114, 22, 2, "height", ""]}, {"id": 63, "type": "NewLayer", "pos": [3681.974020506248, -857.2566086687494], "size": {"0": 210, "1": 262}, "flags": {}, "order": 30, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 103}, {"name": "mask", "type": "MASK", "link": 94}, {"name": "layers", "type": "LAYER", "link": 114}, {"name": "canvas", "type": "IMAGE", "link": 95}], "outputs": [{"name": "layers", "type": "LAYER", "links": [135], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [971, 1818, 87, 22, 2, "height", ""]}, {"id": 101, "type": "PreviewImage", "pos": [5328.397364750004, -1726.0537115390628], "size": {"0": 210, "1": 246}, "flags": {}, "order": 27, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 161}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 21, "type": "Note", "pos": [5329.397364750004, -1946.0537115390628], "size": {"0": 210, "1": 166.71800231933594}, "flags": {}, "order": 2, "mode": 0, "properties": {"text": ""}, "widgets_values": ["\u5206\u4eab\u4fe1\u606f"], "color": "#432", "bgcolor": "#653"}, {"id": 40, "type": "LoadImagesFromURL", "pos": [4928.397364750004, -1961.0537115390628], "size": {"0": 210, "1": 117.2959976196289}, "flags": {}, "order": 3, "mode": 0, "outputs": [{"name": "images", "type": "IMAGE", "links": [], "shape": 6, "slot_index": 0}, {"name": "masks", "type": "MASK", "links": null, "shape": 6}], "properties": {"Node name for S&R": "LoadImagesFromURL"}, "widgets_values": ["https://www.mixcomfy.com/assets/images/mixlab_logo_b.png"]}, {"id": 65, "type": "NewLayer", "pos": [3683, -525], "size": {"0": 210, "1": 262}, "flags": {}, "order": 32, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 102}, {"name": "mask", "type": "MASK", "link": 100}, {"name": "layers", "type": "LAYER", "link": 115}, {"name": "canvas", "type": "IMAGE", "link": 99}], "outputs": [{"name": "layers", "type": "LAYER", "links": [138], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [1791, 1000, 120, 23, 2, "height", ""]}, {"id": 69, "type": "NewLayer", "pos": [3331, -547], "size": {"0": 210, "1": 262}, "flags": {}, "order": 23, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 126}, {"name": "mask", "type": "MASK", "link": 127}, {"name": "layers", "type": "LAYER", "link": null}, {"name": "canvas", "type": "IMAGE", "link": null}, {"name": "width", "type": "INT", "link": 122, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 123, "widget": {"name": "height"}}], "outputs": [{"name": "layers", "type": "LAYER", "links": [115], "shape": 6, "slot_index": 0}], "properties": {"Node name for S&R": "NewLayer"}, "widgets_values": [0, 0, 512, 512, 1, "width", ""]}, {"id": 18, "type": "PreviewImage", "pos": [2550.3720433339645, -773.3056833328795], "size": {"0": 210, "1": 246}, "flags": {}, "order": 24, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 20}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 17, "type": "TransparentImage", "pos": [2192.460559703692, -768.2180470095883], "size": {"0": 315, "1": 358.0000305175781}, "flags": {}, "order": 14, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 18}, {"name": "masks", "type": "MASK", "link": 19}], "outputs": [{"name": "file_path", "type": "STRING", "links": null, "shape": 6}, {"name": "IMAGE", "type": "IMAGE", "links": [20, 99, 189], "shape": 6, "slot_index": 1}, {"name": "RGBA", "type": "RGBA", "links": null, "shape": 6}], "properties": {"Node name for S&R": "TransparentImage"}, "widgets_values": ["yes", "no", "Mixlab_save"]}, {"id": 121, "type": "GetImageSize_", "pos": [3007.0709458493775, -116.84108583414061], "size": {"0": 210, "1": 46}, "flags": {}, "order": 25, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 189}], "outputs": [{"name": "width", "type": "INT", "links": [190], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [191], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 13, "type": "TransparentImage", "pos": [2188.460559703692, -1215.2180470095902], "size": {"0": 315, "1": 358.0000305175781}, "flags": {}, "order": 12, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 15}, {"name": "masks", "type": "MASK", "link": 16}], "outputs": [{"name": "file_path", "type": "STRING", "links": null, "shape": 6}, {"name": "IMAGE", "type": "IMAGE", "links": [17, 95, 195], "shape": 6, "slot_index": 1}, {"name": "RGBA", "type": "RGBA", "links": null, "shape": 6}], "properties": {"Node name for S&R": "TransparentImage"}, "widgets_values": ["yes", "no", "Mixlab_save"]}, {"id": 12, "type": "TransparentImage", "pos": [2169.460559703692, -1640.2180470095893], "size": {"0": 315, "1": 358.0000305175781}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 12}, {"name": "masks", "type": "MASK", "link": 13}], "outputs": [{"name": "file_path", "type": "STRING", "links": null, "shape": 6}, {"name": "IMAGE", "type": "IMAGE", "links": [14, 88, 199], "shape": 6, "slot_index": 1}, {"name": "RGBA", "type": "RGBA", "links": null, "shape": 6}], "properties": {"Node name for S&R": "TransparentImage"}, "widgets_values": ["yes", "no", "Mixlab_save"]}, {"id": 125, "type": "GetImageSize_", "pos": [2996.0709458493775, 396.1589141658592], "size": {"0": 210, "1": 46}, "flags": {}, "order": 19, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 199}], "outputs": [{"name": "width", "type": "INT", "links": [196], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [197], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 16, "type": "LoadImagesFromURL", "pos": [1703.3720433339654, -957.3056833328795], "size": {"0": 400, "1": 200}, "flags": {"pinned": false}, "order": 4, "mode": 0, "outputs": [{"name": "images", "type": "IMAGE", "links": [18, 126, 130], "shape": 6, "slot_index": 0}, {"name": "masks", "type": "MASK", "links": [19, 127], "shape": 6, "slot_index": 1}], "title": "# 16-9", "properties": {"Node name for S&R": "LoadImagesFromURL"}, "widgets_values": ["https://www.mixcomfy.com/assets/images/AIPC16-9.png"]}, {"id": 72, "type": "MergeLayers", "pos": [3955.974020506248, -1182.2566086687507], "size": {"0": 210, "1": 46}, "flags": {}, "order": 34, "mode": 0, "inputs": [{"name": "layers", "type": "LAYER", "link": 131}, {"name": "images", "type": "IMAGE", "link": 198}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [202], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "MergeLayers"}}, {"id": 73, "type": "MergeLayers", "pos": [3965, -842], "size": {"0": 210, "1": 46}, "flags": {}, "order": 35, "mode": 0, "inputs": [{"name": "layers", "type": "LAYER", "link": 135}, {"name": "images", "type": "IMAGE", "link": 194}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [203], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "MergeLayers"}}, {"id": 74, "type": "MergeLayers", "pos": [3956.974020506248, -510.2566086687502], "size": {"0": 210, "1": 46}, "flags": {}, "order": 36, "mode": 0, "inputs": [{"name": "layers", "type": "LAYER", "link": 138}, {"name": "images", "type": "IMAGE", "link": 188}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [204], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "MergeLayers"}}, {"id": 75, "type": "TextInput_", "pos": [2991, -1909], "size": {"0": 325.0866394042969, "1": 121.88375854492188}, "flags": {}, "order": 5, "mode": 0, "outputs": [{"name": "STRING", "type": "STRING", "links": [141], "shape": 3, "slot_index": 0}], "title": "\u4f60\u7684\u59d3\u540d/\u6635\u79f0", "properties": {"Node name for S&R": "TextInput_"}, "widgets_values": ["shadow"]}, {"id": 57, "type": "PreviewImage", "pos": [4318, -1243], "size": {"0": 382.9111022949219, "1": 532.8897705078125}, "flags": {}, "order": 37, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 202}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 126, "type": "PreviewImage", "pos": [4738, -1242], "size": {"0": 368.4781188964844, "1": 553.1112670898438}, "flags": {}, "order": 38, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 203}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 122, "type": "ResizeImageMixlab", "pos": [3247.0709458493775, 143.15891416585947], "size": {"0": 315, "1": 150}, "flags": {}, "order": 31, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 200}, {"name": "width", "type": "INT", "link": 192, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 193, "widget": {"name": "height"}}], "outputs": [{"name": "image", "type": "IMAGE", "links": [194], "shape": 6, "slot_index": 0}, {"name": "average_image", "type": "IMAGE", "links": null, "shape": 6}], "properties": {"Node name for S&R": "ResizeImageMixlab"}, "widgets_values": [512, 512, "center", "off", "#FFFFFF"]}, {"id": 123, "type": "GetImageSize_", "pos": [3004, 156], "size": {"0": 210, "1": 46}, "flags": {}, "order": 22, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 195}], "outputs": [{"name": "width", "type": "INT", "links": [192], "shape": 3, "slot_index": 0}, {"name": "height", "type": "INT", "links": [193], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "GetImageSize_"}}, {"id": 127, "type": "PreviewImage", "pos": [4305, -631], "size": {"0": 378.9849548339844, "1": 499.6607971191406}, "flags": {}, "order": 39, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 204}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 118, "type": "LoadImage", "pos": [2358, -36], "size": {"0": 315, "1": 314}, "flags": {}, "order": 6, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [185, 200, 201], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "title": "\u4f60\u7684\u4f5c\u54c1", "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["1703554480406.png", "image"]}, {"id": 119, "type": "ResizeImageMixlab", "pos": [3277, -137], "size": {"0": 315, "1": 150}, "flags": {}, "order": 33, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 185}, {"name": "width", "type": "INT", "link": 190, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 191, "widget": {"name": "height"}}], "outputs": [{"name": "image", "type": "IMAGE", "links": [188], "shape": 6, "slot_index": 0}, {"name": "average_image", "type": "IMAGE", "links": null, "shape": 6}], "properties": {"Node name for S&R": "ResizeImageMixlab"}, "widgets_values": [512, 512, "center", "off", "#FFFFFF"]}, {"id": 124, "type": "ResizeImageMixlab", "pos": [3257, 359], "size": {"0": 315, "1": 150}, "flags": {}, "order": 29, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 201}, {"name": "width", "type": "INT", "link": 196, "widget": {"name": "width"}}, {"name": "height", "type": "INT", "link": 197, "widget": {"name": "height"}}], "outputs": [{"name": "image", "type": "IMAGE", "links": [198], "shape": 6, "slot_index": 0}, {"name": "average_image", "type": "IMAGE", "links": null, "shape": 6}], "properties": {"Node name for S&R": "ResizeImageMixlab"}, "widgets_values": [512, 512, "center", "off", "#FFFFFF"]}, {"id": 60, "type": "Font", "pos": [2990.1117677550033, -1666.4395648128136], "size": {"0": 315, "1": 58}, "flags": {}, "order": 7, "mode": 0, "outputs": [{"name": "STRING", "type": "STRING", "links": [82], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "Font"}, "widgets_values": ["FangSong"]}, {"id": 59, "type": "TextImage", "pos": [2990, -1540], "size": {"0": 400, "1": 216}, "flags": {}, "order": 15, "mode": 0, "inputs": [{"name": "font_path", "type": "STRING", "link": 82, "widget": {"name": "font_path"}}, {"name": "text", "type": "STRING", "link": 141, "widget": {"name": "text"}}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [92, 102, 103, 142], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": [85, 94, 100], "shape": 3, "slot_index": 1}], "properties": {"Node name for S&R": "TextImage"}, "widgets_values": ["shadow", "C:\\Users\\38957\\Documents\\ai-lab\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes\\comfyui-mixlab-nodes\\assets\\\u738b\u6c49\u5b97\u989c\u6977\u4f53\u7e41.ttf", 101, 0, "#000000", false]}, {"id": 98, "type": "AppInfo", "pos": [4922.397364750004, -1807.0537115390628], "size": {"0": 362.42608642578125, "1": 431.3537902832031}, "flags": {}, "order": 16, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 162}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [161], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "AppInfo"}, "widgets_values": ["AIPC\u5927\u8d5b\u6a21\u677f", "\n75\n118", "57\n126\n127\n", "\u6295\u7a3f\u6a21\u677f#\u53d1\u6325\u4f60\u7684\u60f3\u8c61\u529b", 4, "#AIPC# \u53c2\u8d5b\u4f5c\u54c1", "https://www.weibo.com", "", null]}, {"id": 106, "type": "LoadImage", "pos": [4535, -1843], "size": [210, 314], "flags": {}, "order": 8, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [162], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["1703759043279.png", "image"]}], "links": [[12, 7, 0, 12, 0, "IMAGE"], [13, 7, 1, 12, 1, "MASK"], [14, 12, 1, 8, 0, "IMAGE"], [15, 11, 0, 13, 0, "IMAGE"], [16, 11, 1, 13, 1, "MASK"], [17, 13, 1, 14, 0, "IMAGE"], [18, 16, 0, 17, 0, "IMAGE"], [19, 16, 1, 17, 1, "MASK"], [20, 17, 1, 18, 0, "IMAGE"], [79, 55, 0, 49, 4, "INT"], [80, 55, 1, 49, 5, "INT"], [82, 60, 0, 59, 0, "STRING"], [85, 59, 1, 58, 1, "MASK"], [88, 12, 1, 58, 3, "IMAGE"], [92, 59, 0, 58, 0, "IMAGE"], [94, 59, 1, 63, 1, "MASK"], [95, 13, 1, 63, 3, "IMAGE"], [99, 17, 1, 65, 3, "IMAGE"], [100, 59, 1, 65, 1, "MASK"], [102, 59, 0, 65, 0, "IMAGE"], [103, 59, 0, 63, 0, "IMAGE"], [113, 49, 0, 58, 2, "LAYER"], [114, 68, 0, 63, 2, "LAYER"], [115, 69, 0, 65, 2, "LAYER"], [117, 7, 1, 49, 1, "MASK"], [119, 7, 0, 49, 0, "IMAGE"], [120, 70, 0, 68, 4, "INT"], [121, 70, 1, 68, 5, "INT"], [122, 71, 0, 69, 4, "INT"], [123, 71, 1, 69, 5, "INT"], [124, 11, 0, 68, 0, "IMAGE"], [125, 11, 1, 68, 1, "MASK"], [126, 16, 0, 69, 0, "IMAGE"], [127, 16, 1, 69, 1, "MASK"], [128, 7, 0, 55, 0, "IMAGE"], [129, 11, 0, 70, 0, "IMAGE"], [130, 16, 0, 71, 0, "IMAGE"], [131, 58, 0, 72, 0, "LAYER"], [135, 63, 0, 73, 0, "LAYER"], [138, 65, 0, 74, 0, "LAYER"], [141, 75, 0, 59, 1, "STRING"], [142, 59, 0, 76, 0, "IMAGE"], [161, 98, 0, 101, 0, "IMAGE"], [162, 106, 0, 98, 0, "IMAGE"], [185, 118, 0, 119, 0, "IMAGE"], [188, 119, 0, 74, 1, "IMAGE"], [189, 17, 1, 121, 0, "IMAGE"], [190, 121, 0, 119, 1, "INT"], [191, 121, 1, 119, 2, "INT"], [192, 123, 0, 122, 1, "INT"], [193, 123, 1, 122, 2, "INT"], [194, 122, 0, 73, 1, "IMAGE"], [195, 13, 1, 123, 0, "IMAGE"], [196, 125, 0, 124, 1, "INT"], [197, 125, 1, 124, 2, "INT"], [198, 124, 0, 72, 1, "IMAGE"], [199, 12, 1, 125, 0, "IMAGE"], [200, 118, 0, 122, 0, "IMAGE"], [201, 118, 0, 124, 0, "IMAGE"], [202, 72, 0, 57, 0, "IMAGE"], [203, 73, 0, 126, 0, "IMAGE"], [204, 74, 0, 127, 0, "IMAGE"]], "groups": [{"title": "\u6a21\u677f", "bounding": [1685, -1714, 1070, 1314], "color": "#3f789e", "font_size": 24, "locked": false}, {"title": "Group", "bounding": [4912, -2035, 637, 669], "color": "#444", "font_size": 24, "locked": false}, {"title": "Group", "bounding": [2981, -1993, 728, 216], "color": "#A88", "font_size": 24, "locked": false}, {"title": "Group", "bounding": [2987, -1260, 1198, 1007], "color": "#88A", "font_size": 24, "locked": false}, {"title": "Group", "bounding": [2979, -1741, 420, 426], "color": "#3f789e", "font_size": 24, "locked": false}, {"title": "Group", "bounding": [2986, -211, 616, 730], "color": "#3f789e", "font_size": 24, "locked": false}], "config": {}, "extra": {}, "version": 0.4}, "output": {"7": {"inputs": {"url": "https://www.mixcomfy.com/assets/images/AIPC3-4.png"}, "class_type": "LoadImagesFromURL"}, "8": {"inputs": {"images": ["12", 1]}, "class_type": "PreviewImage"}, "11": {"inputs": {"url": "https://www.mixcomfy.com/assets/images/AIPC9-16.png"}, "class_type": "LoadImagesFromURL"}, "12": {"inputs": {"invert": "yes", "save": "no", "filename_prefix": "Mixlab_save", "images": ["7", 0], "masks": ["7", 1]}, "class_type": "TransparentImage"}, "13": {"inputs": {"invert": "yes", "save": "no", "filename_prefix": "Mixlab_save", "images": ["11", 0], "masks": ["11", 1]}, "class_type": "TransparentImage"}, "14": {"inputs": {"images": ["13", 1]}, "class_type": "PreviewImage"}, "16": {"inputs": {"url": "https://www.mixcomfy.com/assets/images/AIPC16-9.png"}, "class_type": "LoadImagesFromURL"}, "17": {"inputs": {"invert": "yes", "save": "no", "filename_prefix": "Mixlab_save", "images": ["16", 0], "masks": ["16", 1]}, "class_type": "TransparentImage"}, "18": {"inputs": {"images": ["17", 1]}, "class_type": "PreviewImage"}, "40": {"inputs": {"url": "https://www.mixcomfy.com/assets/images/mixlab_logo_b.png"}, "class_type": "LoadImagesFromURL"}, "49": {"inputs": {"x": 0, "y": 0, "width": ["55", 0], "height": ["55", 1], "z_index": 1, "scale_option": "width", "Set Area": "", "image": ["7", 0], "mask": ["7", 1]}, "class_type": "NewLayer"}, "55": {"inputs": {"image": ["7", 0]}, "class_type": "GetImageSize_"}, "57": {"inputs": {"images": ["72", 0]}, "class_type": "PreviewImage"}, "58": {"inputs": {"x": 968, "y": 1381, "width": 114, "height": 22, "z_index": 2, "scale_option": "height", "Set Area": "", "image": ["59", 0], "mask": ["59", 1], "layers": ["49", 0], "canvas": ["12", 1]}, "class_type": "NewLayer"}, "59": {"inputs": {"text": ["75", 0], "font_path": ["60", 0], "font_size": 101, "spacing": 0, "text_color": "#000000", "vertical": false}, "class_type": "TextImage"}, "60": {"inputs": {"font": "FangSong"}, "class_type": "Font"}, "63": {"inputs": {"x": 971, "y": 1818, "width": 87, "height": 22, "z_index": 2, "scale_option": "height", "Set Area": "", "image": ["59", 0], "mask": ["59", 1], "layers": ["68", 0], "canvas": ["13", 1]}, "class_type": "NewLayer"}, "65": {"inputs": {"x": 1791, "y": 1000, "width": 120, "height": 23, "z_index": 2, "scale_option": "height", "Set Area": "", "image": ["59", 0], "mask": ["59", 1], "layers": ["69", 0], "canvas": ["17", 1]}, "class_type": "NewLayer"}, "68": {"inputs": {"x": 0, "y": 0, "width": ["70", 0], "height": ["70", 1], "z_index": 1, "scale_option": "width", "Set Area": "", "image": ["11", 0], "mask": ["11", 1]}, "class_type": "NewLayer"}, "69": {"inputs": {"x": 0, "y": 0, "width": ["71", 0], "height": ["71", 1], "z_index": 1, "scale_option": "width", "Set Area": "", "image": ["16", 0], "mask": ["16", 1]}, "class_type": "NewLayer"}, "70": {"inputs": {"image": ["11", 0]}, "class_type": "GetImageSize_"}, "71": {"inputs": {"image": ["16", 0]}, "class_type": "GetImageSize_"}, "72": {"inputs": {"layers": ["58", 0], "images": ["124", 0]}, "class_type": "MergeLayers"}, "73": {"inputs": {"layers": ["63", 0], "images": ["122", 0]}, "class_type": "MergeLayers"}, "74": {"inputs": {"layers": ["65", 0], "images": ["119", 0]}, "class_type": "MergeLayers"}, "75": {"inputs": {"text": "shadow"}, "class_type": "TextInput_"}, "76": {"inputs": {"images": ["59", 0]}, "class_type": "PreviewImage"}, "98": {"inputs": {"name": "AIPC\u5927\u8d5b\u6a21\u677f", "input_ids": "\n75\n118", "output_ids": "57\n126\n127\n", "description": "\u6295\u7a3f\u6a21\u677f#\u53d1\u6325\u4f60\u7684\u60f3\u8c61\u529b", "version": 4, "share_prefix": "#AIPC# \u53c2\u8d5b\u4f5c\u54c1", "link": "https://www.weibo.com", "category": "", "AppInfoRun": null, "image": ["106", 0]}, "class_type": "AppInfo"}, "101": {"inputs": {"images": ["98", 0]}, "class_type": "PreviewImage"}, "106": {"inputs": {"image": "1703759043279.png", "upload": "image"}, "class_type": "LoadImage"}, "118": {"inputs": {"image": "1703554480406.png", "upload": "image"}, "class_type": "LoadImage"}, "119": {"inputs": {"width": ["121", 0], "height": ["121", 1], "scale_option": "center", "average_color": "off", "fill_color": "#FFFFFF", "image": ["118", 0]}, "class_type": "ResizeImageMixlab"}, "121": {"inputs": {"image": ["17", 1]}, "class_type": "GetImageSize_"}, "122": {"inputs": {"width": ["123", 0], "height": ["123", 1], "scale_option": "center", "average_color": "off", "fill_color": "#FFFFFF", "image": ["118", 0]}, "class_type": "ResizeImageMixlab"}, "123": {"inputs": {"image": ["13", 1]}, "class_type": "GetImageSize_"}, "124": {"inputs": {"width": ["125", 0], "height": ["125", 1], "scale_option": "center", "average_color": "off", "fill_color": "#FFFFFF", "image": ["118", 0]}, "class_type": "ResizeImageMixlab"}, "125": {"inputs": {"image": ["12", 1]}, "class_type": "GetImageSize_"}, "126": {"inputs": {"images": ["73", 0]}, "class_type": "PreviewImage"}, "127": {"inputs": {"images": ["74", 0]}, "class_type": "PreviewImage"}}, "app": {"name": "AIPC\u5927\u8d5b\u6a21\u677f", "description": "\u6295\u7a3f\u6a21\u677f#\u53d1\u6325\u4f60\u7684\u60f3\u8c61\u529b", "version": 4, "input": [{"inputs": {"text": "shadow"}, "class_type": "TextInput_", "title": "\u4f60\u7684\u59d3\u540d/\u6635\u79f0", "id": "75", "options": []}, {"inputs": {"image": "1703554480406.png", "upload": "image"}, "class_type": "LoadImage", "title": "\u4f60\u7684\u4f5c\u54c1", "id": "118", "options": []}], "output": [{"inputs": {"images": ["72", 0]}, "class_type": "PreviewImage", "title": "Preview Image", "id": "57"}, {"inputs": {"images": ["73", 0]}, "class_type": "PreviewImage", "title": "Preview Image", "id": "126"}, {"inputs": {"images": ["74", 0]}, "class_type": "PreviewImage", "title": "Preview Image", "id": "127"}], "seed": {}, "share_prefix": "#AIPC# \u53c2\u8d5b\u4f5c\u54c1", "link": "https://www.weibo.com", "category": "", "filename": "AIPC\u5927\u8d5b\u6a21\u677f_4.json", "icon": "", "id": "7b4c2d0ea2522605969ed331bc7b5e0c"}} \ No newline at end of file diff --git a/example/Image-to-Image_2.json b/example/Image-to-Image_2.json deleted file mode 100644 index 27b0f179..00000000 --- a/example/Image-to-Image_2.json +++ /dev/null @@ -1 +0,0 @@ -{"workflow": {"last_node_id": 20, "last_link_id": 25, "nodes": [{"id": 5, "type": "CLIPTextEncode", "pos": [1029, -2149], "size": {"0": 425.27801513671875, "1": 180.6060791015625}, "flags": {}, "order": 4, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 6}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [3], "slot_index": 0}], "title": "\u8d1f\u5411prompt", "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["text, watermark"]}, {"id": 1, "type": "KSampler", "pos": [1509, -2394], "size": {"0": 315, "1": 262}, "flags": {}, "order": 6, "mode": 0, "inputs": [{"name": "model", "type": "MODEL", "link": 1}, {"name": "positive", "type": "CONDITIONING", "link": 2}, {"name": "negative", "type": "CONDITIONING", "link": 3}, {"name": "latent_image", "type": "LATENT", "link": 14}, {"name": "denoise", "type": "FLOAT", "link": 16, "widget": {"name": "denoise"}, "slot_index": 4}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [7], "slot_index": 0}], "properties": {"Node name for S&R": "KSampler"}, "widgets_values": [849307358041833, "randomize", 20, 8, "euler", "normal", 0.59]}, {"id": 6, "type": "VAEDecode", "pos": [1867, -2378], "size": {"0": 210, "1": 46}, "flags": {"collapsed": false}, "order": 7, "mode": 0, "inputs": [{"name": "samples", "type": "LATENT", "link": 7}, {"name": "vae", "type": "VAE", "link": 8}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [9], "slot_index": 0}], "properties": {"Node name for S&R": "VAEDecode"}}, {"id": 12, "type": "VAEEncode", "pos": [1031, -2482], "size": {"0": 210, "1": 46}, "flags": {}, "order": 5, "mode": 0, "inputs": [{"name": "pixels", "type": "IMAGE", "link": 12}, {"name": "vae", "type": "VAE", "link": 13}], "outputs": [{"name": "LATENT", "type": "LATENT", "links": [14], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "VAEEncode"}}, {"id": 2, "type": "CheckpointLoaderSimple", "pos": [613, -2395], "size": {"0": 315, "1": 98}, "flags": {}, "order": 0, "mode": 0, "outputs": [{"name": "MODEL", "type": "MODEL", "links": [1], "slot_index": 0}, {"name": "CLIP", "type": "CLIP", "links": [5, 6], "slot_index": 1}, {"name": "VAE", "type": "VAE", "links": [8, 13], "slot_index": 2}], "properties": {"Node name for S&R": "CheckpointLoaderSimple"}, "widgets_values": ["deliberate_v2.safetensors"]}, {"id": 11, "type": "LoadImage", "pos": [626, -2823], "size": {"0": 315, "1": 314}, "flags": {}, "order": 1, "mode": 0, "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [12], "shape": 3, "slot_index": 0}, {"name": "MASK", "type": "MASK", "links": null, "shape": 3}], "title": "upload image", "properties": {"Node name for S&R": "LoadImage"}, "widgets_values": ["1703572811473.png", "image"]}, {"id": 14, "type": "FloatSlider", "pos": [1007, -2819], "size": {"0": 315, "1": 130}, "flags": {}, "order": 2, "mode": 0, "outputs": [{"name": "FLOAT", "type": "FLOAT", "links": [16], "shape": 3, "slot_index": 0}], "title": "denoise", "properties": {"Node name for S&R": "FloatSlider"}, "widgets_values": [0.45, 0, 1, 0.001]}, {"id": 15, "type": "EnhanceImage", "pos": [2591, -2531], "size": {"0": 315, "1": 58}, "flags": {}, "order": 9, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 25}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [18], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "EnhanceImage"}, "widgets_values": [1.1]}, {"id": 16, "type": "PreviewImage", "pos": [2963, -2520], "size": {"0": 210, "1": 246}, "flags": {}, "order": 10, "mode": 0, "inputs": [{"name": "images", "type": "IMAGE", "link": 18}], "properties": {"Node name for S&R": "PreviewImage"}}, {"id": 4, "type": "CLIPTextEncode", "pos": [1022, -2375], "size": {"0": 422.84503173828125, "1": 164.31304931640625}, "flags": {}, "order": 3, "mode": 0, "inputs": [{"name": "clip", "type": "CLIP", "link": 5}], "outputs": [{"name": "CONDITIONING", "type": "CONDITIONING", "links": [2], "slot_index": 0}], "title": "\u6b63\u5411prompt", "properties": {"Node name for S&R": "CLIPTextEncode"}, "widgets_values": ["hair,girl"]}, {"id": 7, "type": "AppInfo", "pos": [2134, -2528], "size": {"0": 408.4201965332031, "1": 406.9195861816406}, "flags": {}, "order": 8, "mode": 0, "inputs": [{"name": "image", "type": "IMAGE", "link": 9}], "outputs": [{"name": "IMAGE", "type": "IMAGE", "links": [25], "shape": 3, "slot_index": 0}], "properties": {"Node name for S&R": "AppInfo"}, "widgets_values": ["Image-to-Image", "11\n14\n4\n2\n", "16", "\u6f14\u793a\u57fa\u672c\u7684\u56fe\u751f\u56fe\u6d41\u7a0b", 2, "#comfyui-mixlab-nodes# ", "", null]}], "links": [[1, 2, 0, 1, 0, "MODEL"], [2, 4, 0, 1, 1, "CONDITIONING"], [3, 5, 0, 1, 2, "CONDITIONING"], [5, 2, 1, 4, 0, "CLIP"], [6, 2, 1, 5, 0, "CLIP"], [7, 1, 0, 6, 0, "LATENT"], [8, 2, 2, 6, 1, "VAE"], [9, 6, 0, 7, 0, "IMAGE"], [12, 11, 0, 12, 0, "IMAGE"], [13, 2, 2, 12, 1, "VAE"], [14, 12, 0, 1, 3, "LATENT"], [16, 14, 0, 1, 4, "FLOAT"], [18, 15, 0, 16, 0, "IMAGE"], [25, 7, 0, 15, 0, "IMAGE"]], "groups": [], "config": {}, "extra": {}, "version": 0.4}, "output": {"1": {"inputs": {"seed": 849307358041833, "steps": 20, "cfg": 8, "sampler_name": "euler", "scheduler": "normal", "denoise": ["14", 0], "model": ["2", 0], "positive": ["4", 0], "negative": ["5", 0], "latent_image": ["12", 0]}, "class_type": "KSampler"}, "2": {"inputs": {"ckpt_name": "deliberate_v2.safetensors"}, "class_type": "CheckpointLoaderSimple"}, "4": {"inputs": {"text": "hair,girl", "clip": ["2", 1]}, "class_type": "CLIPTextEncode"}, "5": {"inputs": {"text": "text, watermark", "clip": ["2", 1]}, "class_type": "CLIPTextEncode"}, "6": {"inputs": {"samples": ["1", 0], "vae": ["2", 2]}, "class_type": "VAEDecode"}, "7": {"inputs": {"name": "Image-to-Image", "input_ids": "11\n14\n4\n2\n", "output_ids": "16", "description": "\u6f14\u793a\u57fa\u672c\u7684\u56fe\u751f\u56fe\u6d41\u7a0b", "version": 2, "share_prefix": "#comfyui-mixlab-nodes# ", "link": "", "image": ["6", 0]}, "class_type": "AppInfo"}, "11": {"inputs": {"image": "1703572811473.png", "upload": "image"}, "class_type": "LoadImage"}, "12": {"inputs": {"pixels": ["11", 0], "vae": ["2", 2]}, "class_type": "VAEEncode"}, "14": {"inputs": {"number": 0.45, "min_value": 0, "max_value": 1, "step": 0.001}, "class_type": "FloatSlider"}, "15": {"inputs": {"contrast": 1.1, "image": ["7", 0]}, "class_type": "EnhanceImage"}, "16": {"inputs": {"images": ["15", 0]}, "class_type": "PreviewImage"}}, "app": {"name": "Image-to-Image", "description": "\u6f14\u793a\u57fa\u672c\u7684\u56fe\u751f\u56fe\u6d41\u7a0b", "version": 2, "input": [{"inputs": {"image": "1703572811473.png", "upload": "image"}, "class_type": "LoadImage", "title": "upload image", "id": "11", "options": []}, {"inputs": {"number": 0.45, "min_value": 0, "max_value": 1, "step": 0.001}, "class_type": "FloatSlider", "title": "denoise", "id": "14", "options": {"min": 0, "max": 1, "step": 0.001}}, {"inputs": {"text": "hair,girl", "clip": ["2", 1]}, "class_type": "CLIPTextEncode", "title": "\u6b63\u5411prompt", "id": "4", "options": []}, {"inputs": {"ckpt_name": "deliberate_v2.safetensors"}, "class_type": "CheckpointLoaderSimple", "title": "Load Checkpoint", "id": "2", "options": ["512-inpainting-ema.safetensors", "SSD-1B.safetensors", "awportrait_v12.safetensors", "cardosAnime_v20.safetensors", "deliberate_v2.safetensors", "illuminatiDiffusionV1_v11-unclip-h-fp16.safetensors", "sd_xl_turbo_1.0_fp16.safetensors", "svd.safetensors"]}], "output": [{"inputs": {"images": ["15", 0]}, "class_type": "PreviewImage", "title": "Preview Image", "id": "16"}], "seed": {"1": "randomize"}, "share_prefix": "#comfyui-mixlab-nodes# ", "link": null, "filename": "Image-to-Image_2.json", "icon": "", "id": "e87b8dde1301aafb9ecbaac8f957f72f"}} \ No newline at end of file diff --git a/example/Text-to-Image_3.json b/example/Text-to-Image_3.json deleted file mode 100644 index 1ed076b5..00000000 --- a/example/Text-to-Image_3.json +++ /dev/null @@ -1,704 +0,0 @@ -{ - "workflow": { - "last_node_id": 21, - "last_link_id": 26, - "nodes": [ - { - "id": 5, - "type": "CLIPTextEncode", - "pos": [ - 1029, - -2149 - ], - "size": { - "0": 425.27801513671875, - "1": 180.6060791015625 - }, - "flags": {}, - "order": 4, - "mode": 0, - "inputs": [ - { - "name": "clip", - "type": "CLIP", - "link": 6 - } - ], - "outputs": [ - { - "name": "CONDITIONING", - "type": "CONDITIONING", - "links": [ - 3 - ], - "slot_index": 0 - } - ], - "title": "\u8d1f\u5411prompt", - "properties": { - "Node name for S&R": "CLIPTextEncode" - }, - "widgets_values": [ - "text, watermark" - ] - }, - { - "id": 6, - "type": "VAEDecode", - "pos": [ - 1867, - -2378 - ], - "size": { - "0": 210, - "1": 46 - }, - "flags": { - "collapsed": false - }, - "order": 6, - "mode": 0, - "inputs": [ - { - "name": "samples", - "type": "LATENT", - "link": 7 - }, - { - "name": "vae", - "type": "VAE", - "link": 8 - } - ], - "outputs": [ - { - "name": "IMAGE", - "type": "IMAGE", - "links": [ - 9 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "VAEDecode" - } - }, - { - "id": 2, - "type": "CheckpointLoaderSimple", - "pos": [ - 613, - -2395 - ], - "size": { - "0": 315, - "1": 98 - }, - "flags": {}, - "order": 0, - "mode": 0, - "outputs": [ - { - "name": "MODEL", - "type": "MODEL", - "links": [ - 1 - ], - "slot_index": 0 - }, - { - "name": "CLIP", - "type": "CLIP", - "links": [ - 5, - 6 - ], - "slot_index": 1 - }, - { - "name": "VAE", - "type": "VAE", - "links": [ - 8 - ], - "slot_index": 2 - } - ], - "properties": { - "Node name for S&R": "CheckpointLoaderSimple" - }, - "widgets_values": [ - "deliberate_v2.safetensors" - ] - }, - { - "id": 15, - "type": "EnhanceImage", - "pos": [ - 2591, - -2531 - ], - "size": { - "0": 315, - "1": 58 - }, - "flags": {}, - "order": 8, - "mode": 0, - "inputs": [ - { - "name": "image", - "type": "IMAGE", - "link": 25 - } - ], - "outputs": [ - { - "name": "IMAGE", - "type": "IMAGE", - "links": [ - 18 - ], - "shape": 3, - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "EnhanceImage" - }, - "widgets_values": [ - 1.1 - ] - }, - { - "id": 16, - "type": "PreviewImage", - "pos": [ - 2963, - -2520 - ], - "size": { - "0": 210, - "1": 246 - }, - "flags": {}, - "order": 9, - "mode": 0, - "inputs": [ - { - "name": "images", - "type": "IMAGE", - "link": 18 - } - ], - "properties": { - "Node name for S&R": "PreviewImage" - } - }, - { - "id": 1, - "type": "KSampler", - "pos": [ - 1509, - -2394 - ], - "size": { - "0": 315, - "1": 262 - }, - "flags": {}, - "order": 5, - "mode": 0, - "inputs": [ - { - "name": "model", - "type": "MODEL", - "link": 1 - }, - { - "name": "positive", - "type": "CONDITIONING", - "link": 2 - }, - { - "name": "negative", - "type": "CONDITIONING", - "link": 3 - }, - { - "name": "latent_image", - "type": "LATENT", - "link": 26, - "slot_index": 3 - }, - { - "name": "denoise", - "type": "FLOAT", - "link": 16, - "widget": { - "name": "denoise" - }, - "slot_index": 4 - } - ], - "outputs": [ - { - "name": "LATENT", - "type": "LATENT", - "links": [ - 7 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "KSampler" - }, - "widgets_values": [ - 914085921137224, - "randomize", - 20, - 8, - "euler", - "normal", - 0.59 - ] - }, - { - "id": 21, - "type": "EmptyLatentImage", - "pos": [ - 994, - -2560 - ], - "size": { - "0": 315, - "1": 106 - }, - "flags": {}, - "order": 1, - "mode": 0, - "outputs": [ - { - "name": "LATENT", - "type": "LATENT", - "links": [ - 26 - ], - "shape": 3 - } - ], - "properties": { - "Node name for S&R": "EmptyLatentImage" - }, - "widgets_values": [ - 512, - 512, - 1 - ] - }, - { - "id": 14, - "type": "FloatSlider", - "pos": [ - 1007, - -2819 - ], - "size": { - "0": 315, - "1": 130 - }, - "flags": {}, - "order": 2, - "mode": 0, - "outputs": [ - { - "name": "FLOAT", - "type": "FLOAT", - "links": [ - 16 - ], - "shape": 3, - "slot_index": 0 - } - ], - "title": "denoise", - "properties": { - "Node name for S&R": "FloatSlider" - }, - "widgets_values": [ - 1, - 0, - 1, - 0.001 - ] - }, - { - "id": 7, - "type": "AppInfo", - "pos": [ - 2134, - -2528 - ], - "size": { - "0": 408.4201965332031, - "1": 406.9195861816406 - }, - "flags": {}, - "order": 7, - "mode": 0, - "inputs": [ - { - "name": "image", - "type": "IMAGE", - "link": 9 - } - ], - "outputs": [ - { - "name": "IMAGE", - "type": "IMAGE", - "links": [ - 25 - ], - "shape": 3, - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "AppInfo" - }, - "widgets_values": [ - "Text-to-Image", - "4\n5", - "16", - "\u6f14\u793a\u57fa\u672c\u7684\u6587\u751f\u56fe\u6d41\u7a0b", - 3, - "#comfyui-mixlab-nodes# ", - null, - null - ] - }, - { - "id": 4, - "type": "CLIPTextEncode", - "pos": [ - 1022, - -2375 - ], - "size": { - "0": 422.84503173828125, - "1": 164.31304931640625 - }, - "flags": {}, - "order": 3, - "mode": 0, - "inputs": [ - { - "name": "clip", - "type": "CLIP", - "link": 5 - } - ], - "outputs": [ - { - "name": "CONDITIONING", - "type": "CONDITIONING", - "links": [ - 2 - ], - "slot_index": 0 - } - ], - "title": "\u6b63\u5411prompt", - "properties": { - "Node name for S&R": "CLIPTextEncode" - }, - "widgets_values": [ - "superman" - ] - } - ], - "links": [ - [ - 1, - 2, - 0, - 1, - 0, - "MODEL" - ], - [ - 2, - 4, - 0, - 1, - 1, - "CONDITIONING" - ], - [ - 3, - 5, - 0, - 1, - 2, - "CONDITIONING" - ], - [ - 5, - 2, - 1, - 4, - 0, - "CLIP" - ], - [ - 6, - 2, - 1, - 5, - 0, - "CLIP" - ], - [ - 7, - 1, - 0, - 6, - 0, - "LATENT" - ], - [ - 8, - 2, - 2, - 6, - 1, - "VAE" - ], - [ - 9, - 6, - 0, - 7, - 0, - "IMAGE" - ], - [ - 16, - 14, - 0, - 1, - 4, - "FLOAT" - ], - [ - 18, - 15, - 0, - 16, - 0, - "IMAGE" - ], - [ - 25, - 7, - 0, - 15, - 0, - "IMAGE" - ], - [ - 26, - 21, - 0, - 1, - 3, - "LATENT" - ] - ], - "groups": [], - "config": {}, - "extra": {}, - "version": 0.4 - }, - "output": { - "1": { - "inputs": { - "seed": 914085921137224, - "steps": 20, - "cfg": 8, - "sampler_name": "euler", - "scheduler": "normal", - "denoise": [ - "14", - 0 - ], - "model": [ - "2", - 0 - ], - "positive": [ - "4", - 0 - ], - "negative": [ - "5", - 0 - ], - "latent_image": [ - "21", - 0 - ] - }, - "class_type": "KSampler" - }, - "2": { - "inputs": { - "ckpt_name": "deliberate_v2.safetensors" - }, - "class_type": "CheckpointLoaderSimple" - }, - "4": { - "inputs": { - "text": "superman", - "clip": [ - "2", - 1 - ] - }, - "class_type": "CLIPTextEncode" - }, - "5": { - "inputs": { - "text": "text, watermark", - "clip": [ - "2", - 1 - ] - }, - "class_type": "CLIPTextEncode" - }, - "6": { - "inputs": { - "samples": [ - "1", - 0 - ], - "vae": [ - "2", - 2 - ] - }, - "class_type": "VAEDecode" - }, - "7": { - "inputs": { - "name": "Text-to-Image", - "input_ids": "4\n5", - "output_ids": "16", - "description": "\u6f14\u793a\u57fa\u672c\u7684\u6587\u751f\u56fe\u6d41\u7a0b", - "version": 3, - "share_prefix": "#comfyui-mixlab-nodes# ", - "link": null, - "AppInfoRun": null, - "image": [ - "6", - 0 - ] - }, - "class_type": "AppInfo" - }, - "14": { - "inputs": { - "number": 1, - "min_value": 0, - "max_value": 1, - "step": 0.001 - }, - "class_type": "FloatSlider" - }, - "15": { - "inputs": { - "contrast": 1.1, - "image": [ - "7", - 0 - ] - }, - "class_type": "EnhanceImage" - }, - "16": { - "inputs": { - "images": [ - "15", - 0 - ] - }, - "class_type": "PreviewImage" - }, - "21": { - "inputs": { - "width": 512, - "height": 512, - "batch_size": 1 - }, - "class_type": "EmptyLatentImage" - } - }, - "app": { - "name": "Text-to-Image", - "description": "\u6f14\u793a\u57fa\u672c\u7684\u6587\u751f\u56fe\u6d41\u7a0b", - "version": 3, - "input": [ - { - "inputs": { - "text": "superman", - "clip": [ - "2", - 1 - ] - }, - "class_type": "CLIPTextEncode", - "title": "\u6b63\u5411prompt", - "id": "4", - "options": [] - }, - { - "inputs": { - "text": "text, watermark", - "clip": [ - "2", - 1 - ] - }, - "class_type": "CLIPTextEncode", - "title": "\u8d1f\u5411prompt", - "id": "5", - "options": [] - } - ], - "output": [ - { - "inputs": { - "images": [ - "15", - 0 - ] - }, - "class_type": "PreviewImage", - "title": "Preview Image", - "id": "16" - } - ], - "seed": { - "1": "randomize" - }, - "share_prefix": "#comfyui-mixlab-nodes# ", - "link": null, - "filename": "Text-to-Image_3.json", - "icon": "", - "id": "608ad67eea6981c4c378f8b5b4a8e04d" - } -} \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml index 9ee5a41f..e403ec31 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,7 +1,7 @@ [project] name = "comfyui-mixlab-nodes" description = "3D, ScreenShareNode & FloatingVideoNode, SpeechRecognition & SpeechSynthesis, GPT, LoadImagesFromLocal, Layers, Other Nodes, ..." -version = "0.37.0" +version = "0.38.0" license = "MIT" dependencies = ["numpy", "pyOpenSSL", "watchdog", "opencv-python-headless", "matplotlib", "openai", "simple-lama-inpainting", "clip-interrogator==0.6.0", "transformers>=4.36.0", "lark-parser", "imageio-ffmpeg", "rembg[gpu]", "omegaconf==2.3.0", "Pillow>=9.5.0", "einops==0.7.0", "trimesh>=4.0.5", "huggingface-hub", "scikit-image"] diff --git a/web/javascript/3d_mixlab.js b/web/javascript/3d_mixlab.js index f0de1ea3..b5a9e6f4 100644 --- a/web/javascript/3d_mixlab.js +++ b/web/javascript/3d_mixlab.js @@ -2,35 +2,7 @@ import { app } from '../../../scripts/app.js' import { api } from '../../../scripts/api.js' import { $el } from '../../../scripts/ui.js' -let isScriptLoaded = {} -function loadExternalScript(url,type) { - return new Promise((resolve, reject) => { - if (isScriptLoaded[url]) { - resolve(); - return; - } - - const existingScript = document.querySelector(`script[src="${url}"]`); - if (existingScript) { - existingScript.onload = () => { - isScriptLoaded[url] = true; - resolve(); - }; - existingScript.onerror = reject; - return; - } - - const script = document.createElement('script'); - script.src = url; - script.type = type; // Add this line to load the script as an ES module - script.onload = () => { - isScriptLoaded[url] = true; - resolve(); - }; - script.onerror = reject; - document.head.appendChild(script); - }); -} +import { loadExternalScript } from './common.js' const getLocalData = key => { let data = {} @@ -130,9 +102,9 @@ function get_position_style (ctx, widget_width, y, node_height) { transformOrigin: '0 0', transform: transform, left: - document.querySelector('.comfy-menu').style.display === 'none' - ? `60px` - : `0`, + document.querySelector('.comfy-menu').style.display === 'none' + ? `60px` + : `0`, top: `0`, cursor: 'pointer', position: 'absolute', @@ -299,7 +271,6 @@ app.registerExtension({ if (nodeType.comfyClass == '3DImage') { const orig_nodeCreated = nodeType.prototype.onNodeCreated nodeType.prototype.onNodeCreated = async function () { - await loadExternalScript( '/mixlab/app/lib/model-viewer.min.js', 'module' diff --git a/web/javascript/app_mixlab.js b/web/javascript/app_mixlab.js index 8ba95ee0..a30b389d 100644 --- a/web/javascript/app_mixlab.js +++ b/web/javascript/app_mixlab.js @@ -4,28 +4,11 @@ import { api } from '../../../scripts/api.js' import { td_bg } from './td_background.js' // console.log('td_bg', td_bg) +import { getUrl, base64Df, get_position_style, getObjectInfo } from './common.js' //本机安装的插件节点全集 window._nodesAll = null -//获取当前系统的插件,节点清单 -function getObjectInfo () { - return new Promise(async (resolve, reject) => { - let url = getUrl() - - try { - const response = await fetch(`${url}/object_info`) - const data = await response.json() - resolve(data) - } catch (error) { - reject(error) - } - }) -} - -const base64Df = - '' - const parseImageToBase64 = url => { return new Promise((res, rej) => { fetch(url) @@ -45,42 +28,6 @@ const parseImageToBase64 = url => { }) } -function get_position_style (ctx, widget_width, y, node_height) { - const MARGIN = 12 // the margin around the html element - - /* Create a transform that deals with all the scrolling and zooming */ - const elRect = ctx.canvas.getBoundingClientRect() - const transform = new DOMMatrix() - .scaleSelf( - elRect.width / ctx.canvas.width, - elRect.height / ctx.canvas.height - ) - .multiplySelf(ctx.getTransform()) - .translateSelf(MARGIN, MARGIN + y) - - return { - transformOrigin: '0 0', - transform: transform, - left: - document.querySelector('.comfy-menu').style.display === 'none' - ? `60px` - : `0`, - top: `0`, - cursor: 'pointer', - position: 'absolute', - maxWidth: `${widget_width - MARGIN * 2}px`, - // maxHeight: `${node_height - MARGIN * 2}px`, // we're assuming we have the whole height of the node - width: `${widget_width - MARGIN * 2}px`, - // height: `${node_height * 0.3 - MARGIN * 2}px`, - // background: '#EEEEEE', - display: 'flex', - flexDirection: 'column', - // alignItems: 'center', - justifyContent: 'flex-start', - zIndex: 9999999 - } -} - async function drawImageToCanvas (imageUrl, sFactor = 320) { var canvas = document.createElement('canvas') var ctx = canvas.getContext('2d') @@ -282,13 +229,6 @@ async function extractInputAndOutputData ( return { input, output, seed, seedTitle } } -function getUrl () { - let api_host = `${window.location.hostname}:${window.location.port}` - let api_base = '' - let url = `${window.location.protocol}//${api_host}${api_base}` - return url -} - const getLocalData = key => { let data = {} try { diff --git a/web/javascript/chat.js b/web/javascript/chat.js index 85418b3f..93365954 100644 --- a/web/javascript/chat.js +++ b/web/javascript/chat.js @@ -1,3 +1,5 @@ +import { getUrl } from "./common.js" + async function* completion (url, messages, controller) { let data = { model: 'gpt-3.5-turbo-16k', @@ -92,8 +94,9 @@ async function* completion (url, messages, controller) { // return (await response.json()).content } -export async function completion_ (url, messages, controller, callback) { - let request = await completion(url, messages, controller) +export async function completion_ (apiKey,url, messages, controller, callback) { + // let request = await completion(url, messages, controller) + let request=await chatCompletion(apiKey,url, messages, controller) for await (const chunk of request) { let content = chunk.data.choices[0].delta.content || '' if (chunk.data.choices[0].role == 'assistant') { @@ -104,3 +107,96 @@ export async function completion_ (url, messages, controller, callback) { if (callback) callback(content) } } + + + +export async function* chatCompletion(apiKey, url,messages,controller){ + // const apiKey = 'YOUR_API_KEY' + url = `${getUrl()}/chat/completions` + + const requestBody = { + model: '01-ai/Yi-1.5-9B-Chat-16K', + messages: messages, + stream: true, + key:apiKey + } + + let response=await fetch(url, { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + Authorization: `Bearer ${apiKey}`, + signal: controller.signal + }, + body: JSON.stringify(requestBody), + mode: 'cors' // This is to ensure the request is made with CORS + }) + + const reader = response.body.getReader() + const decoder = new TextDecoder() + + let content = '' + let leftover = '' // Buffer for partially read lines + + try { + let cont = true + while (cont) { + let result = await reader.read() + if (result.done) { + break + } + + // Add any leftover data to the current chunk of data + const text = leftover + decoder.decode(result.value) + + // Check if the last character is a line break + const endsWithLineBreak = text.endsWith('\n') + + // Split the text into lines + let lines = text.split('\n') + + // If the text doesn't end with a line break, then the last line is incomplete + // Store it in leftover to be added to the next chunk of data + if (!endsWithLineBreak) { + leftover = lines.pop() + } else { + leftover = '' // Reset leftover if we have a line break at the end + } + + // Parse all sse events and add them to result + const regex = /^(\S+):\s(.*)$/gm + for (const line of lines) { + const match = regex.exec(line) + if (match) { + result[match[1]] = match[2] + // since we know this is llama.cpp, let's just decode the json in data + if (result.data) { + result.data = JSON.parse(result.data) + console.log('#result.data',result.data) + + content += result.data.choices[0].delta?.content || '' + + // yield + yield result + + // if we got a stop token from server, we will break here + if (result.data.choices[0].finish_reason == 'stop') { + if (result.data.generation_settings) { + // generation_settings = result.data.generation_settings; + } + cont = false + break + } + } + } + } + } + } catch (e) { + console.error('llama error: ', e) + throw e + } finally { + controller.abort() + } + + return content +} diff --git a/web/javascript/command.js b/web/javascript/command.js deleted file mode 100644 index 694fb5c1..00000000 --- a/web/javascript/command.js +++ /dev/null @@ -1,697 +0,0 @@ -function get_url () { - // 如果有缓存记录 - let hostUrl = localStorage.getItem('_hostUrl') || '' - if (hostUrl) { - return hostUrl - } - let api_host = `${window.location.hostname}:${window.location.port}` - let api_base = '' - let url = `${window.location.protocol}//${api_host}${api_base}` - return url -} - -function getFilenameAndCategoryFromUrl (url) { - const queryString = url.split('?')[1] - if (!queryString) { - return {} - } - - const params = new URLSearchParams(queryString) - - const filename = params.get('filename') - ? decodeURIComponent(params.get('filename')) - : null - const category = params.get('category') - ? decodeURIComponent(params.get('category') || '') - : '' - - return { category, filename } -} - -async function get_my_app (category = '', filename = null) { - let url = get_url() - const res = await fetch(`${url}/mixlab/workflow`, { - method: 'POST', - mode: 'cors', // 允许跨域请求 - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - task: 'my_app', - filename, - category - }) - }) - let result = await res.json() - let data = [] - try { - for (const res of result.data) { - let { output, app } = res.data - if (app.filename) - data.push({ - ...app, - data: output, - date: res.date - }) - } - } catch (error) {} - - return data -} - -async function getAppInit () { - const { category, filename } = getFilenameAndCategoryFromUrl( - window.location.href - ) - return await get_my_app(category, filename) -} - -function success (isSuccess, btn, text) { - isSuccess ? (btn.innerText = 'success') : text - setTimeout(() => { - btn.innerText = text - }, 5000) -} - -async function interrupt () { - try { - await fetch(`${get_url()}/interrupt`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: undefined - }) - } catch (error) { - console.error(error) - } - return true -} - -async function getQueue (clientId) { - try { - const res = await fetch(`${get_url()}/queue`) - const data = await res.json() - return { - // Running action uses a different endpoint for cancelling - Running: Array.from(data.queue_running, prompt => { - if (prompt[3].client_id === clientId) { - let prompt_id = prompt[1] - return { - prompt_id, - remove: () => interrupt() - } - } - }), - Pending: data.queue_pending.map(prompt => ({ prompt })) - } - } catch (error) { - console.error(error) - return { Running: [], Pending: [] } - } -} - -// 请求历史数据 -async function getPromptResult (category) { - let url = get_url() - try { - const response = await fetch(`${url}/mixlab/prompt_result`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - action: 'all' - }) - }) - - if (response.ok) { - const data = await response.json() - console.log('#getPromptResult:', category, data) - - return data.result.filter(r => r.appInfo.category == category) - // 处理返回的数据 - } else { - console.log('Error:', response.status) - // 处理错误情况 - } - } catch (error) { - console.log('Error:', error) - // 处理异常情况 - } -} - -// 新的运行工作流的接口 -function queuePromptNew ( - filename, - category, - seed, - input, - client_id, - apps = null -) { - let url = get_url() - // var filename = "Text-to-Image_1.json", category = ""; - - // 随机seed - // promptWorkflow = randomSeed(seed, promptWorkflow); - let d = { filename, category, seed, input, client_id } - if (apps) { - d.apps = apps - } - - const data = JSON.stringify(d) - return new Promise((res, rej) => { - fetch(`${url}/mixlab/prompt`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: data - }) - .then(response => { - if (!response.ok) { - // Handle HTTP error responses - if (response.status === 400) { - return response.json().then(errorData => { - // Process the error data - console.error('Error 400:', errorData) - alert(JSON.stringify(errorData, null, 2)) - res(null) - }) - } - throw new Error('Network response was not ok') - } - return response.json() // Process the response data - }) - .then(data => { - // Handle the response data - console.log('Success:', data) - res(true) - }) - .catch(error => { - // Handle fetch errors - console.error('Fetch error:', error) - res(null) - }) - }) -} - -// 保存历史数据 -async function savePromptResult (data) { - let url = get_url() - try { - const response = await fetch(`${url}/mixlab/prompt_result`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - action: 'save', - data - }) - }) - - if (response.ok) { - const res = await response.json() - console.log('Response:', res) - return res - // 处理返回的数据 - } else { - console.log('Error:', response.status) - // 处理错误情况 - } - } catch (error) { - console.log('Error:', error) - // 处理异常情况 - } -} - -async function uploadImage (blob, fileType = '.png', filename) { - const body = new FormData() - body.append( - 'image', - new File([blob], (filename || new Date().getTime()) + fileType) - ) - - const url = get_url() - - const resp = await fetch(`${url}/upload/image`, { - method: 'POST', - body - }) - - let data = await resp.json() - // console.log(data) - let { name, subfolder } = data - let src = `${url}/view?filename=${encodeURIComponent( - name - )}&type=input&subfolder=${subfolder}&rand=${Math.random()}` - - return { url: src, name } -} - -async function uploadMask (arrayBuffer, imgurl) { - const body = new FormData() - const filename = 'clipspace-mask-' + performance.now() + '.png' - - let original_url = new URL(imgurl) - - const original_ref = { filename: original_url.searchParams.get('filename') } - - let original_subfolder = original_url.searchParams.get('subfolder') - if (original_subfolder) original_ref.subfolder = original_subfolder - - let original_type = original_url.searchParams.get('type') - if (original_type) original_ref.type = original_type - - body.append('image', arrayBuffer, filename) - body.append('original_ref', JSON.stringify(original_ref)) - body.append('type', 'input') - body.append('subfolder', 'clipspace') - - const url = get_url() - - const resp = await fetch(`${url}/upload/mask`, { - method: 'POST', - body - }) - - // console.log(resp) - let data = await resp.json() - let { name, subfolder, type } = data - let src = `${url}/view?filename=${encodeURIComponent( - name - )}&type=${type}&subfolder=${subfolder}&rand=${Math.random()}` - - return { url: src, name: 'clipspace/' + name } -} - -const parseImageToBase64 = url => { - return new Promise((res, rej) => { - fetch(url) - .then(response => response.blob()) - .then(blob => { - const reader = new FileReader() - reader.onloadend = () => { - const base64data = reader.result - res(base64data) - // 在这里可以将base64数据用于进一步处理或显示图片 - } - reader.readAsDataURL(blob) - }) - .catch(error => { - console.log('发生错误:', error) - }) - }) -} - -function createImage (url) { - let im = new Image() - return new Promise((res, rej) => { - im.onload = () => res(im) - im.src = url - }) -} - -function convertImageToBlackBasedOnAlpha (image) { - const canvas = document.createElement('canvas') - const ctx = canvas.getContext('2d') - - // Draw the image onto the canvas - canvas.width = image.width - canvas.height = image.height - ctx.drawImage(image, 0, 0) - - // Get the image data from the canvas - const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height) - const pixels = imageData.data - - // Modify the RGB values based on the alpha channel - for (let i = 0; i < pixels.length; i += 4) { - const alpha = pixels[i + 3] - if (alpha !== 0) { - // Set non-transparent pixels to black - // 蒙版是黑色? - pixels[i] = 0 // Red - pixels[i + 1] = 255 // Green - pixels[i + 2] = 0 // Blue - } - } - - // Put the modified image data back onto the canvas - ctx.putImageData(imageData, 0, 0) - - // Convert the modified canvas to base64 data URL - const base64ImageData = canvas.toDataURL('image/png') // Replace 'png' with your desired image format - - return base64ImageData -} - -const blobToBase64 = blob => { - return new Promise((res, rej) => { - const reader = new FileReader() - reader.onloadend = () => { - const base64data = reader.result - res(base64data) - // 在这里可以将base64数据用于进一步处理或显示图片 - } - reader.readAsDataURL(blob) - }) -} - -function base64ToBlob (base64) { - // 去除base64编码中的前缀 - const base64WithoutPrefix = base64.replace(/^data:image\/\w+;base64,/, '') - - // 将base64编码转换为字节数组 - const byteCharacters = atob(base64WithoutPrefix) - - // 创建一个存储字节数组的数组 - const byteArrays = [] - - // 将字节数组放入数组中 - for (let offset = 0; offset < byteCharacters.length; offset += 1024) { - const slice = byteCharacters.slice(offset, offset + 1024) - - const byteNumbers = new Array(slice.length) - for (let i = 0; i < slice.length; i++) { - byteNumbers[i] = slice.charCodeAt(i) - } - - const byteArray = new Uint8Array(byteNumbers) - byteArrays.push(byteArray) - } - - // 创建blob对象 - const blob = new Blob(byteArrays, { type: 'image/png' }) // 根据实际情况设置MIME类型 - - return blob -} - -async function calculateImageHash (blob) { - const buffer = await blob.arrayBuffer() - const hashBuffer = await crypto.subtle.digest('SHA-256', buffer) - const hashArray = Array.from(new Uint8Array(hashBuffer)) - const hashHex = hashArray - .map(byte => byte.toString(16).padStart(2, '0')) - .join('') - return hashHex -} - -// 获取 rembg 模型 -async function get_rembg_models () { - try { - const response = await fetch(`${get_url()}/mixlab/folder_paths`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - type: 'rembg' - }) - }) - - const data = await response.json() - // console.log(data) - return data.names - } catch (error) { - console.error(error) - } -} - -//自动抠图 -async function run_rembg (model, base64) { - try { - const response = await fetch(`${get_url()}/mixlab/rembg`, { - method: 'POST', - headers: { - 'Content-Type': 'application/json' - }, - body: JSON.stringify({ - model, - base64 - }) - }) - - const data = await response.json() - // console.log(data) - return data.data - } catch (error) { - console.error(error) - } -} - -function copyHtmlWithImagesToClipboard (data, cb) { - // 创建一个临时div元素 - const tempDiv = document.createElement('div') - - // 将HTML字符串赋值给div的innerHTML属性 - tempDiv.innerHTML = data - - // 获取div中的所有图像元素 - const images = tempDiv.getElementsByTagName('img') - - // 遍历图像元素,并将图像数据转换为Base64编码 - for (let i = 0; i < images.length; i++) { - const image = images[i] - const canvas = document.createElement('canvas') - const context = canvas.getContext('2d') - - // 设置canvas尺寸与图像尺寸相同 - canvas.width = image.width - canvas.height = image.height - - // 在canvas上绘制图像 - context.drawImage(image, 0, 0) - - // 将canvas转换为Base64编码 - const imageData = canvas.toDataURL() - - // 将Base64编码替换图像元素的src属性 - image.src = imageData - } - - let richText = tempDiv.innerHTML - - // 创建一个新的Blob对象,并将富文本字符串作为数据传递进去 - const blob = new Blob([richText], { type: 'text/html' }) - - // 创建一个ClipboardItem对象,并将Blob对象添加到其中 - const clipboardItem = new ClipboardItem({ 'text/html': blob }) - - // 使用Clipboard API将内容复制到剪贴板 - navigator.clipboard - .write([clipboardItem]) - .then(() => { - console.log('富文本已成功复制到剪贴板') - tempDiv.remove() - if (cb) cb(true) - }) - .catch(error => { - console.error('复制到剪贴板失败:', error) - tempDiv.remove() - if (cb) cb(false) - }) -} - -function copyImagesToClipboard (html, cb) { - const tempDiv = document.createElement('div') - tempDiv.innerHTML = html - const images = tempDiv.querySelectorAll('img') - const promises = Array.from(images).map(image => { - return new Promise(resolve => { - const img = new Image() - img.src = image.src - img.onload = () => { - const canvas = document.createElement('canvas') - const context = canvas.getContext('2d') - canvas.width = img.width - canvas.height = img.height - context.drawImage(img, 0, 0) - canvas.toBlob(blob => { - const clipboardItem = new ClipboardItem({ 'image/png': blob }) - navigator.clipboard - .write([clipboardItem]) - .then(() => { - resolve() - tempDiv.remove() - if (cb) cb(true) - }) - .catch(error => { - reject(error) - tempDiv.remove() - if (cb) cb(false) - }) - }) - } - }) - }) - Promise.all([...promises]) - .then(() => { - console.log('所有图片已成功复制到剪贴板') - if (cb) cb(true) - tempDiv.remove() - }) - .catch(error => { - console.error('复制到剪贴板失败:', error) - if (cb) cb(false) - tempDiv.remove() - }) -} - -function copyTextToClipboard (html, cb) { - const tempDiv = document.createElement('div') - tempDiv.innerHTML = html - - const text = tempDiv.innerText - const textData = new ClipboardItem({ - 'text/plain': new Blob([text], { type: 'text/plain' }) - }) - - navigator.clipboard - .write([textData]) - .then(() => { - console.log('所有文本已成功复制到剪贴板', text) - if (cb) cb(true) - tempDiv.remove() - }) - .catch(error => { - console.error('复制到剪贴板失败:', error) - if (cb) cb(false) - tempDiv.remove() - }) -} - -// ComfyUI\web\extensions\core\dynamicPrompts.js -// 官方实现修改 -// Allows for simple dynamic prompt replacement -// Inputs in the format {a|b} will have a random value of a or b chosen when the prompt is queued. - -/* - * Strips C-style line and block comments from a string - */ -function dynamicPrompts (prompt) { - prompt = prompt.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, '') - while ( - prompt.replace('\\{', '').includes('{') && - prompt.replace('\\}', '').includes('}') - ) { - const startIndex = prompt.replace('\\{', '00').indexOf('{') - const endIndex = prompt.replace('\\}', '00').indexOf('}') - - const optionsString = prompt.substring(startIndex + 1, endIndex) - const options = optionsString.split('|') - - const randomIndex = Math.floor(Math.random() * options.length) - const randomOption = options[randomIndex] - - prompt = - prompt.substring(0, startIndex) + - randomOption + - prompt.substring(endIndex + 1) - } - return prompt -} - -// 遍历所有组合,语法同 动态提示 -function generateAllCombinations (prompt) { - prompt = prompt.replace(/\/\*[\s\S]*?\*\/|\/\/.*/g, '') - - // Helper function to get all combinations - function getAllCombinations (parts) { - if (parts.length === 0) return [''] - const [firstPart, ...restParts] = parts - const restCombinations = getAllCombinations(restParts) - const allCombinations = [] - - firstPart.forEach(option => { - restCombinations.forEach(combination => { - allCombinations.push(option + combination) - }) - }) - - return allCombinations - } - - // Split prompt into static parts and dynamic parts - let parts = [] - let startIndex = 0 - - while ( - prompt.replace('\\{', '').includes('{') && - prompt.replace('\\}', '').includes('}') - ) { - startIndex = prompt.replace('\\{', '00').indexOf('{') - const endIndex = prompt.replace('\\}', '00').indexOf('}') - const staticPart = prompt.substring(0, startIndex) - const optionsString = prompt.substring(startIndex + 1, endIndex) - const options = optionsString.split('|') - - parts.push([staticPart]) - parts.push(options) - - prompt = prompt.substring(endIndex + 1) - } - - // Add the remaining static part - parts.push([prompt]) - - // Get all combinations - const combinations = getAllCombinations(parts) - - return combinations -} - -const _textNodes = [ - 'TextInput_', - 'CLIPTextEncode', - 'PromptSimplification', - 'ChinesePrompt_Mix' - ], - _loraNodes = ['CheckpointLoaderSimple', 'LoraLoader'], - _numberNodes = ['FloatSlider', 'IntNumber'], - _slideNodes = ['PromptSlide'], - _imageNodes = [ - 'LoadImage', - 'VHS_LoadVideo', - 'ImagesPrompt_', - 'LoadImagesToBatch' - ], - _colorNodes = ['Color'], - _audioNodes = ['LoadAndCombinedAudio_'] - -export default { - get_url, - get_my_app, - getAppInit, - getFilenameAndCategoryFromUrl, - success, - interrupt, - getQueue, - queuePromptNew, - savePromptResult, - uploadImage, - uploadMask, - run_rembg, - get_rembg_models, - parseImageToBase64, - createImage, - convertImageToBlackBasedOnAlpha, - blobToBase64, - base64ToBlob, - calculateImageHash, - copyHtmlWithImagesToClipboard, - copyImagesToClipboard, - copyTextToClipboard, - dynamicPrompts, - generateAllCombinations, - - _textNodes, - _loraNodes, - _numberNodes, - _slideNodes, - _imageNodes, - _colorNodes, - _audioNodes -} diff --git a/web/javascript/common.js b/web/javascript/common.js new file mode 100644 index 00000000..210062d2 --- /dev/null +++ b/web/javascript/common.js @@ -0,0 +1,168 @@ +export const base64Df = + '' + +export function getUrl () { + let api_host = `${window.location.hostname}:${window.location.port}` + let api_base = '' + let url = `${window.location.protocol}//${api_host}${api_base}` + return url +} + +// 更新或者获取key +export const updateLLMAPIKey = async key => { + try { + const res = await fetch(`${getUrl()}/mixlab/llm_api_key`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json' + }, + body: JSON.stringify({ + key: key || null + }) + }) + + const data = await res.json() + + if (!res.ok) { + console.error('Error:', data.error) + return + } + + if (key) { + console.log('API key saved successfully:', data.message) + return key + } else { + console.log('Retrieved API key:', data.key) + return data.key + } + } catch (error) { + console.error('Request failed:', error) + } +} + +//获取当前系统的插件,节点清单 +export function getObjectInfo () { + return new Promise(async (resolve, reject) => { + let url = getUrl() + + try { + const response = await fetch(`${url}/object_info`) + const data = await response.json() + resolve(data) + } catch (error) { + reject(error) + } + }) +} + +export function get_position_style (ctx, widget_width, y, node_height) { + const MARGIN = 0 // the margin around the html element + + /* Create a transform that deals with all the scrolling and zooming */ + const elRect = ctx.canvas.getBoundingClientRect() + const transform = new DOMMatrix() + .scaleSelf( + elRect.width / ctx.canvas.width, + elRect.height / ctx.canvas.height + ) + .multiplySelf(ctx.getTransform()) + .translateSelf(MARGIN, MARGIN + y) + + return { + transformOrigin: '0 0', + transform: transform, + left: + document.querySelector('.comfy-menu').style.display === 'none' + ? `60px` + : `0`, + top: `0`, + cursor: 'pointer', + position: 'absolute', + maxWidth: `${widget_width - MARGIN * 2}px`, + // maxHeight: `${node_height - MARGIN * 2}px`, // we're assuming we have the whole height of the node + // width: `${widget_width - MARGIN * 2}px`, + height: `${node_height * 0.3 - MARGIN * 2}px`, + // background: '#EEEEEE', + display: 'flex', + flexDirection: 'column', + // alignItems: 'center', + justifyContent: 'flex-start', + zIndex: 99 + } +} + +export function loadExternalScript (url, type) { + return new Promise((resolve, reject) => { + const existingScript = document.querySelector(`script[src="${url}"]`) + if (existingScript) { + existingScript.onload = () => { + resolve() + } + existingScript.onerror = reject + return + } + + const script = document.createElement('script') + script.src = url + if (type) script.type = type // Add this line to load the script as an ES module + script.onload = () => { + resolve() + } + script.onerror = reject + document.head.appendChild(script) + }) +} + +export async function getQueue () { + try { + const res = await fetch(`${getUrl()}/queue`) + const data = await res.json() + // console.log(data.queue_running,data.queue_pending) + return { + // Running action uses a different endpoint for cancelling + Running: data.queue_running.length, + Pending: data.queue_pending.length + } + } catch (error) { + console.error(error) + return { Running: 0, Pending: 0 } + } +} + +export async function interrupt () { + const resp = await fetch(`${getUrl()}/interrupt`, { + method: 'POST' + }) +} + +export async function sleep (t = 200) { + return new Promise((res, rej) => { + setTimeout(() => { + res(true) + }, t) + }) +} + +export function createImage (url) { + let im = new Image() + return new Promise((res, rej) => { + im.onload = () => res(im) + im.src = url + }) +} + +export const getLocalData = key => { + let data = {} + try { + data = JSON.parse(localStorage.getItem(key)) || {} + } catch (error) { + return {} + } + return data +} + +export const saveLocalData = (key, id, val) => { + let data = getLocalData(key) + data[id] = val + localStorage.setItem(key, JSON.stringify(data)) +} diff --git a/web/javascript/main_mixlab.js b/web/javascript/main_mixlab.js index be33675f..5d4300b4 100644 --- a/web/javascript/main_mixlab.js +++ b/web/javascript/main_mixlab.js @@ -3,31 +3,17 @@ import { app } from '../../../scripts/app.js' import { ComfyWidgets } from '../../../scripts/widgets.js' import { $el } from '../../../scripts/ui.js' -let api_host = `${window.location.hostname}:${window.location.port}` -let api_base = '' -let url = `${window.location.protocol}//${api_host}${api_base}` - -async function getQueue () { - try { - const res = await fetch(`${url}/queue`) - const data = await res.json() - // console.log(data.queue_running,data.queue_pending) - return { - // Running action uses a different endpoint for cancelling - Running: data.queue_running.length, - Pending: data.queue_pending.length - } - } catch (error) { - console.error(error) - return { Running: 0, Pending: 0 } - } -} - -async function interrupt () { - const resp = await fetch(`${url}/interrupt`, { - method: 'POST' - }) -} +import { + getQueue, + interrupt, + get_position_style, + base64Df, + getUrl, + createImage, + sleep +} from './common.js' + +// let url = getUrl() async function clipboardWriteImage (win, url) { const canvas = document.createElement('canvas') @@ -208,22 +194,7 @@ async function shareScreen ( } } -async function sleep (t = 200) { - return new Promise((res, rej) => { - setTimeout(() => { - res(true) - }, t) - }) -} - -function createImage (url) { - let im = new Image() - return new Promise((res, rej) => { - im.onload = () => res(im) - im.src = url - }) -} - + async function compareImages (threshold, previousImage, currentImage) { // 将 base64 转换为 Image 对象 var previousImg = await createImage(previousImage) @@ -458,47 +429,6 @@ async function requestCamera () { return false } -/* -A method that returns the required style for the html -*/ -function get_position_style (ctx, widget_width, y, node_height, top) { - const MARGIN = 4 // the margin around the html element - - /* Create a transform that deals with all the scrolling and zooming */ - const elRect = ctx.canvas.getBoundingClientRect() - const transform = new DOMMatrix() - .scaleSelf( - elRect.width / ctx.canvas.width, - elRect.height / ctx.canvas.height - ) - .multiplySelf(ctx.getTransform()) - .translateSelf(MARGIN, MARGIN + y) - - return { - transformOrigin: '0 0', - transform: transform, - left: - document.querySelector('.comfy-menu').style.display === 'none' - ? `60px` - : `0`, - top: `${top}px`, - cursor: 'pointer', - position: 'absolute', - maxWidth: `${widget_width - MARGIN * 2}px`, - // maxHeight: `${node_height - MARGIN * 2}px`, // we're assuming we have the whole height of the node - width: `${widget_width - MARGIN * 2}px`, - // height: `${node_height - MARGIN * 2}px`, - // background: '#EEEEEE', - display: 'flex', - flexDirection: 'column', - // alignItems: 'center', - justifyContent: 'space-around' - } -} - -const base64Df = - '' - app.registerExtension({ name: 'Mixlab.image.ScreenShareNode', async getCustomWidgets (app) { diff --git a/web/javascript/ui_mixlab.js b/web/javascript/ui_mixlab.js index d77a3def..d044cd89 100644 --- a/web/javascript/ui_mixlab.js +++ b/web/javascript/ui_mixlab.js @@ -11,6 +11,8 @@ import { smart_init, addSmartMenu } from './smart_connect.js' import { completion_ } from './chat.js' +import { getLocalData, saveLocalData, updateLLMAPIKey } from './common.js' + function showTextByLanguage (key, json) { // 获取浏览器语言 var language = navigator.language @@ -28,33 +30,40 @@ function showTextByLanguage (key, json) { //系统prompt // const systemPrompt = `You are a prompt creator, your task is to create prompts for the user input request, the prompts are image descriptions that include keywords for (an adjective, type of image, framing/composition, subject, subject appearance/action, environment, lighting situation, details of the shoot/illustration, visuals aesthetics and artists), brake keywords by comas, provide high quality, non-verboose, coherent, brief, concise, and not superfluous prompts, the subject from the input request must be included verbatim on the prompt,the prompt is english` -let tool ={ - "name": "create_prompt", - "description": "Create a prompt with a given subject, content, and style based on user input for image descriptions.", - "parameter": { - "type": "object", - "properties": { - "subject": { - "type": "string", - "description": "The subject of the prompt, included verbatim from the input request.", - "required": true +let tool = { + name: 'create_prompt', + description: + 'Create a prompt with a given subject, content, and style based on user input for image descriptions.', + parameter: { + type: 'object', + properties: { + subject: { + type: 'string', + description: + 'The subject of the prompt, included verbatim from the input request.', + required: true }, - "content": { - "type": "string", - "description": "The content of the prompt, primarily focusing on the scene and objects, including keywords for adjective, type of image, framing/composition, subject appearance/action, and environment.", - "required": true + content: { + type: 'string', + description: + 'The content of the prompt, primarily focusing on the scene and objects, including keywords for adjective, type of image, framing/composition, subject appearance/action, and environment.', + required: true }, - "style": { - "type": "string", - "description": "The style of the prompt, including lighting situation, details of the shoot/illustration, visual aesthetics, and artists. Ensure it is high quality, non-verbose, coherent, brief, concise, and not superfluous.", - "required": true + style: { + type: 'string', + description: + 'The style of the prompt, including lighting situation, details of the shoot/illustration, visual aesthetics, and artists. Ensure it is high quality, non-verbose, coherent, brief, concise, and not superfluous.', + required: true } } } } -const systemPrompt=`You are a helpful assistant with access to the following functions. Use them if required - ${JSON.stringify(tool,null,2)}` - +const systemPrompt = `You are a helpful assistant with access to the following functions. Use them if required - ${JSON.stringify( + tool, + null, + 2 +)}` if (!localStorage.getItem('_mixlab_system_prompt')) { localStorage.setItem('_mixlab_system_prompt', systemPrompt) @@ -100,7 +109,7 @@ async function start_llama (model = 'Phi-3-mini-4k-instruct-Q5_K_S.gguf') { }) const data = await response.json() - if (data.llama_cpp_error||!data.port) { + if (data.llama_cpp_error || !data.port) { return } @@ -145,14 +154,15 @@ function resizeImage (base64Image) { }) } -const createMixlabBtn=()=>{ +const createMixlabBtn = () => { const appsButton = document.createElement('button') appsButton.id = 'mixlab_chatbot_by_llamacpp' - appsButton.className="comfyui-button" + appsButton.className = 'comfyui-button' appsButton.textContent = '♾️Mixlab' // appsButton.onclick = () => appsButton.onclick = async () => { + let llm_key = await updateLLMAPIKey() // if (window._mixlab_llamacpp&&window._mixlab_llamacpp.model&&window._mixlab_llamacpp.model.length>0) { // //显示运行的模型 // createModelsModal([ @@ -164,9 +174,7 @@ const createMixlabBtn=()=>{ // // ms = ms.filter(m => !m.match('-mmproj-')) // // if (ms.length > 0) createModelsModal(ms) // } - createModelsModal([ - - ]) + createModelsModal([], llm_key) } return appsButton } @@ -182,50 +190,49 @@ async function createMenu () { ` menu.append(separator) - if(menu.style.display==="none"&&document.querySelector('.comfyui-menu-push')){ + if ( + menu.style.display === 'none' && + document.querySelector('.comfyui-menu-push') + ) { //新版ui document.querySelector('.comfyui-menu-push').append(createMixlabBtn()) - }else{ + } else { if (!menu.querySelector('#mixlab_chatbot_by_llamacpp')) { menu.append(createMixlabBtn()) } } - - } let isScriptLoaded = {} -function loadExternalScript(url) { +function loadExternalScript (url) { return new Promise((resolve, reject) => { if (isScriptLoaded[url]) { - resolve(); - return; + resolve() + return } - const existingScript = document.querySelector(`script[src="${url}"]`); + const existingScript = document.querySelector(`script[src="${url}"]`) if (existingScript) { existingScript.onload = () => { - isScriptLoaded[url] = true; - resolve(); - }; - existingScript.onerror = reject; - return; + isScriptLoaded[url] = true + resolve() + } + existingScript.onerror = reject + return } - const script = document.createElement('script'); - script.src = url; + const script = document.createElement('script') + script.src = url script.onload = () => { - isScriptLoaded[url] = true; - resolve(); - }; - script.onerror = reject; - document.head.appendChild(script); - }); + isScriptLoaded[url] = true + resolve() + } + script.onerror = reject + document.head.appendChild(script) + }) } - - // function createChart (chartDom, nodes) { @@ -257,9 +264,7 @@ function createChart (chartDom, nodes) { } async function createNodesCharts () { - await loadExternalScript( - '/mixlab/app/lib/echarts.min.js' - ) + await loadExternalScript('/mixlab/app/lib/echarts.min.js') const templates = await loadTemplate() var nodes = {} Array.from(templates, t => { @@ -691,9 +696,9 @@ function get_position_style (ctx, widget_width, y, node_height) { transformOrigin: '0 0', transform: transform, left: - document.querySelector('.comfy-menu').style.display === 'none' - ? `60px` - : `0`, + document.querySelector('.comfy-menu').style.display === 'none' + ? `60px` + : `0`, top: `0`, cursor: 'pointer', position: 'absolute', @@ -830,21 +835,67 @@ async function fetchReadmeContent (url) { async function startLLM (model) { let res = await start_llama(model) - window._mixlab_llamacpp = res||{ model:[] } + window._mixlab_llamacpp = res || { model: [] } - localStorage.setItem('_mixlab_llama_select', res?.model||'') + localStorage.setItem('_mixlab_llama_select', res?.model || '') - if (document.body.querySelector('#mixlab_chatbot_by_llamacpp')&&window._mixlab_llamacpp?.url) { + if ( + document.body.querySelector('#mixlab_chatbot_by_llamacpp') && + window._mixlab_llamacpp?.url + ) { document.body .querySelector('#mixlab_chatbot_by_llamacpp') .setAttribute('title', window._mixlab_llamacpp.url) } - if (document.body.querySelector('#llm_status_btn')&&window._mixlab_llamacpp) { - document.body.querySelector('#llm_status_btn').innerText = window._mixlab_llamacpp.model + if ( + document.body.querySelector('#llm_status_btn') && + window._mixlab_llamacpp + ) { + document.body.querySelector('#llm_status_btn').innerText = + window._mixlab_llamacpp.model } } -function createModelsModal (models) { +function createInputOfLabel(labelText,key,id){ + const label = document.createElement('p') + label.innerText = labelText + + const input = document.createElement('input') + input.type = 'text' + input.style = `color: var(--input-text); + background-color: var(--comfy-input-bg); + border-radius: 8px; + border-color: var(--border-color); + height: 26px; + padding: 4px 10px; + width: 150px; + margin-left: 12px;` + + input.value = getLocalData(key)["-"] ||Object.values(getLocalData(key))[0] || 'by Mixlab' + + input.addEventListener('change', e => { + e.stopPropagation() + e.preventDefault() + + saveLocalData(key, '-', input.value) + }) + + + const div=document.createElement('div'); + div.style=`display: flex; + justify-content: flex-start; + align-items: baseline;padding: 0 18px;` + + div.addEventListener('click', e => { + e.stopPropagation() + }) + + div.appendChild(label) + div.appendChild(input) + return div +} + +function createModelsModal (models, llmKey) { var div = document.querySelector('#model-modal') || document.createElement('div') div.id = 'model-modal' @@ -910,8 +961,6 @@ function createModelsModal (models) { user-select: none; ` - // headTitleElement.href = 'https://github.com/shadowcz007/comfyui-mixlab-nodes' - // headTitleElement.target = '_blank' const linkIcon = document.createElement('small') linkIcon.textContent = showTextByLanguage('Auto Open', { 'Auto Open': '自动开启' @@ -923,7 +972,7 @@ function createModelsModal (models) { Status: 'OFF' }) statusIcon.id = 'llm_status_btn' - statusIcon.style=`padding: 4px; + statusIcon.style = `padding: 4px; background-color: rgb(102, 255, 108); color: black; font-size: 12px; @@ -939,35 +988,12 @@ function createModelsModal (models) { // startLLM() }) - const n_gpu = document.createElement('input') - n_gpu.type = 'number' - n_gpu.setAttribute('min', -1) - n_gpu.setAttribute('max', 9999) - - n_gpu.style = `color: var(--input-text); - background-color: var(--comfy-input-bg); - border-radius: 8px; - border-color: var(--border-color); - height: 26px; - padding: 4px 10px; - width: 48px; - margin-left: 12px;` - if (localStorage.getItem('_mixlab_llama_n_gpu')) { - n_gpu.value = parseInt(localStorage.getItem('_mixlab_llama_n_gpu')) - } else { - n_gpu.value = -1 - localStorage.setItem('_mixlab_llama_n_gpu', -1) - } - - const n_gpu_p = document.createElement('p') - n_gpu_p.innerText = 'n_gpu_layers' - const batchPageBtn = document.createElement('div') batchPageBtn.style = `display: flex; justify-content: center; align-items: center; font-size: 12px;` - batchPageBtn.innerHTML=`App` const title = document.createElement('p') @@ -983,20 +1009,16 @@ function createModelsModal (models) { font-size: 12px; flex-direction: column; ` left_d.appendChild(title) - // title.appendChild(statusIcon) - // left_d.appendChild(linkIcon) left_d.appendChild(batchPageBtn) headTitleElement.appendChild(left_d) - // headTitleElement.appendChild(n_gpu_div) - //重启 const reStart = document.createElement('small') reStart.textContent = showTextByLanguage('restart', { restart: '重启' }) - reStart.style=`padding: 8px; + reStart.style = `padding: 8px; font-size: 16px; outline: 1px solid; padding-top: 4px; @@ -1029,23 +1051,23 @@ function createModelsModal (models) { }) }) - n_gpu.addEventListener('click', e => { - e.stopPropagation() - localStorage.setItem('_mixlab_llama_n_gpu', n_gpu.value) - }) - modal.appendChild(headTitleElement) // Create modal content area var modalContent = document.createElement('div') modalContent.classList.add('modal-content') + let llmKeyDiv=createInputOfLabel('LLM Key','_mixlab_llm_api_key',"-") + + saveLocalData("_mixlab_llm_api_url","-","https://api.siliconflow.cn/v1") + let llmAPIDiv=createInputOfLabel('LLM API','_mixlab_llm_api_url',"-") + + modalContent.appendChild(llmKeyDiv); + modalContent.appendChild(llmAPIDiv) + var inputForSystemPrompt = document.createElement('textarea') inputForSystemPrompt.className = 'comfy-multiline-input' - inputForSystemPrompt.style = ` height: 260px; - width: 480px; - font-size: 16px; - padding: 18px;` + inputForSystemPrompt.style = `height: 260px;width: 480px;font-size: 16px;padding: 18px;` inputForSystemPrompt.value = localStorage.getItem('_mixlab_system_prompt') inputForSystemPrompt.addEventListener('change', e => { @@ -1057,9 +1079,9 @@ function createModelsModal (models) { e.stopPropagation() }) - // modalContent.appendChild(inputForSystemPrompt) + modalContent.appendChild(inputForSystemPrompt) - if (!window._mixlab_llamacpp||(window._mixlab_llamacpp?.model?.length==0)) { + if (!window._mixlab_llamacpp || window._mixlab_llamacpp?.model?.length == 0) { for (const m of models) { let d = document.createElement('div') d.innerText = `${showTextByLanguage('Run', { @@ -1443,7 +1465,7 @@ app.registerExtension({ .querySelector('#mixlab_chatbot_by_llamacpp') .setAttribute('title', res.url) }) - }else{ + } else { // startLLM('') } @@ -1470,19 +1492,18 @@ app.registerExtension({ LGraphCanvas.prototype.fixTheNode = function (node) { let new_node = LiteGraph.createNode(node.comfyClass) console.log(node) - if(new_node){ + if (new_node) { new_node.pos = [node.pos[0], node.pos[1]] app.canvas.graph.add(new_node, false) copyNodeValues(node, new_node) app.canvas.graph.remove(node) } - } smart_init() LGraphCanvas.prototype.text2text = async function (node) { - // console.log(node) + let widget = node.widgets.filter( w => w.name === 'text' && typeof w.value == 'string' )[0] @@ -1494,10 +1515,12 @@ app.registerExtension({ let userInput = widget.value widget.value = widget.value.trim() widget.value += '\n' - let jsonStr=""; + let jsonStr = '' try { await completion_( - window._mixlab_llamacpp.url + '/v1/chat/completions', + getLocalData('_mixlab_llm_api_key')['-']||Object.values(getLocalData('_mixlab_llm_api_key'))[0], + getLocalData("_mixlab_llm_api_url")['-']||Object.values(getLocalData("_mixlab_llm_api_url"))[0], + [ { role: 'system', @@ -1509,7 +1532,7 @@ app.registerExtension({ t => { // console.log(t) widget.value += t - jsonStr+=t + jsonStr += t } ) } catch (error) { @@ -1533,29 +1556,34 @@ app.registerExtension({ ], controller, t => { - // console.log(t) + console.log(t) widget.value += t - jsonStr+=t + jsonStr += t } ) }) } } - let json=null; - - try { - json=JSON.parse(jsonStr.trim()) - } catch (error) { - json=JSON.parse(jsonStr.trim()+"}") - } - - if(json){ - widget.value = [json.subject,json.content,json.style].join('\n') - }else{ - widget.value = widget.value.trim() - } - + // let json = jsonStr + // widget.value = widget.value.trim()+json + // console.log(jsonStr) + // try { + // json = JSON.parse(jsonStr.trim()) + // } catch (error) { + + // try { + // json = JSON.parse(jsonStr.trim() + '}') + // } catch (error) { + + // } + // } + + // if (json) { + // widget.value = [json.subject, json.content, json.style].join('\n') + // } else { + // widget.value = widget.value.trim() + // } } } @@ -1836,15 +1864,14 @@ app.registerExtension({ ) let text_input = node.inputs?.filter( - inp => inp.name == 'text' && inp.type == 'STRING' + inp => inp.name == 'text' && (inp.type == 'STRING' ) ) - + if ( - text_input && - text_input.length == 0 && + text_widget && text_widget.length == 1 && - window._mixlab_llamacpp && + false && node.type != 'ShowTextForGPT' ) { opts.push({ @@ -1855,19 +1882,19 @@ app.registerExtension({ }) } - if ( - node.imgs && - node.imgs.length > 0 && - window._mixlab_llamacpp && - window._mixlab_llamacpp.chat_format === 'llava-1-5' - ) { - opts.push({ - content: 'Image-to-Text ♾️Mixlab', // with a name - callback: () => { - LGraphCanvas.prototype.image2text(node) - } // and the callback - }) - } + // if ( + // node.imgs && + // node.imgs.length > 0 && + // window._mixlab_llamacpp && + // window._mixlab_llamacpp.chat_format === 'llava-1-5' + // ) { + // opts.push({ + // content: 'Image-to-Text ♾️Mixlab', // with a name + // callback: () => { + // LGraphCanvas.prototype.image2text(node) + // } // and the callback + // }) + // } } return [...opts, null, ...options] // and return the options diff --git a/web/javascript/utils_mixlab.js b/web/javascript/utils_mixlab.js index 39a39ea9..daa5ac9f 100644 --- a/web/javascript/utils_mixlab.js +++ b/web/javascript/utils_mixlab.js @@ -1,49 +1,13 @@ import { app } from '../../../scripts/app.js' import { $el } from '../../../scripts/ui.js' +import { + loadExternalScript, + updateLLMAPIKey, + get_position_style, + getLocalData +} from './common.js' -const getLocalData = key => { - let data = {} - try { - data = JSON.parse(localStorage.getItem(key)) || {} - } catch (error) { - return {} - } - return data -} -function get_position_style (ctx, widget_width, y, node_height) { - const MARGIN = 4 // the margin around the html element - - /* Create a transform that deals with all the scrolling and zooming */ - const elRect = ctx.canvas.getBoundingClientRect() - const transform = new DOMMatrix() - .scaleSelf( - elRect.width / ctx.canvas.width, - elRect.height / ctx.canvas.height - ) - .multiplySelf(ctx.getTransform()) - .translateSelf(MARGIN, MARGIN + y) - - return { - transformOrigin: '0 0', - transform: transform, - left: - document.querySelector('.comfy-menu').style.display === 'none' - ? `60px` - : `0`, - top: `0`, - cursor: 'pointer', - position: 'absolute', - maxWidth: `${widget_width - MARGIN * 2}px`, - // maxHeight: `${node_height - MARGIN * 2}px`, // we're assuming we have the whole height of the node - width: `${widget_width - MARGIN * 2}px`, - // height: `${node_height * 0.3 - MARGIN * 2}px`, - // background: '#EEEEEE', - display: 'flex', - flexDirection: 'column', - // alignItems: 'center', - justifyContent: 'space-around' - } -} +loadExternalScript('/mixlab/app/lib/pickr.min.js') function hexToRGBA (hexColor) { var hex = hexColor.replace('#', '') @@ -125,7 +89,7 @@ app.registerExtension({ nodeType.prototype.onNodeCreated = function () { orig_nodeCreated?.apply(this, arguments) - console.log('Color nodeData', this.div) + // console.log('Color nodeData', this.div) const widget = { type: 'div', @@ -366,7 +330,7 @@ app.registerExtension({ return [128, 32] // a method to compute the current size of the widget }, async serializeValue (nodeId, widgetIndex) { - let data = getLocalData('_mixlab_api_key') + let data = getLocalData('_mixlab_llm_api_key') return data[node.id] || 'by Mixlab' } } @@ -383,13 +347,14 @@ app.registerExtension({ nodeType.prototype.onNodeCreated = function () { orig_nodeCreated?.apply(this, arguments) + const rowHeight = this.rowHeight const widget = { type: 'div', name: 'input_key', draw (ctx, node, widget_width, y, widget_height) { Object.assign( this.div.style, - get_position_style(ctx, widget_width, 24, node.size[1]) + get_position_style(ctx, widget_width, y, node.size[1]) ) } } @@ -417,11 +382,11 @@ app.registerExtension({ // ip.value = placeholder ip.style = `margin-left:8px; - outline: none; - border: none; - padding:12px; - width: 100%; - ` + outline: none; + border: none; + padding:12px; + width: 100%; + ` div.appendChild(ip) @@ -429,12 +394,13 @@ app.registerExtension({ let data = getLocalData(key) data[this.id] = ip.value.trim() localStorage.setItem(key, JSON.stringify(data)) + updateLLMAPIKey(data[this.id]) }) return div } - let inputKey = inputDiv('_mixlab_api_key', 'Key') + let inputKey = inputDiv('_mixlab_llm_api_key', 'Key') widget.div.appendChild(inputKey) @@ -447,6 +413,12 @@ app.registerExtension({ return onRemoved?.() } + // const processMouseWheel=app.canvas.processMouseWheel + // app.canvas.processMouseWheel=()=>{ + // console.log(app.canvas.ds.scale) + // return processMouseWheel?.() + // } + this.serialize_widgets = true //需要保存参数 } } @@ -455,11 +427,13 @@ app.registerExtension({ if (node.type === 'KeyInput') { let widget = node.widgets.filter(w => w.div)[0] - let apiKey = getLocalData('_mixlab_api_key') + let apiKey = getLocalData('_mixlab_llm_api_key') let id = node.id if (widget.div.querySelector('.Key')) widget.div.querySelector('.Key').value = apiKey[id] || 'by Mixlab' + + if (apiKey[id]) updateLLMAPIKey(apiKey[id]) } }, nodeCreated (node, app) { @@ -469,12 +443,14 @@ app.registerExtension({ if (node.type === 'KeyInput') { let widget = node.widgets.filter(w => w.div)[0] - let apiKey = getLocalData('_mixlab_api_key') + let apiKey = getLocalData('_mixlab_llm_api_key') let id = node.id if (widget.div.querySelector('.Key')) widget.div.querySelector('.Key').value = apiKey[id] || 'by Mixlab' + + if (apiKey[id]) updateLLMAPIKey(apiKey[id]) } }, 1000) } diff --git a/workflow/5-gpt-workflow.json b/workflow/5-gpt-workflow.json deleted file mode 100644 index e7867882..00000000 --- a/workflow/5-gpt-workflow.json +++ /dev/null @@ -1,631 +0,0 @@ -{ - "last_node_id": 47, - "last_link_id": 46, - "nodes": [ - { - "id": 27, - "type": "CLIPTextEncode", - "pos": [ - 1961.178268896482, - 527.6060791015625 - ], - "size": { - "0": 422.84503173828125, - "1": 164.31304931640625 - }, - "flags": {}, - "order": 5, - "mode": 0, - "inputs": [ - { - "name": "clip", - "type": "CLIP", - "link": 24 - }, - { - "name": "text", - "type": "STRING", - "link": 46, - "widget": { - "name": "text" - } - } - ], - "outputs": [ - { - "name": "CONDITIONING", - "type": "CONDITIONING", - "links": [ - 21 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "CLIPTextEncode" - }, - "widgets_values": [ - "beautiful scenery nature glass bottle landscape, , purple galaxy bottle," - ] - }, - { - "id": 28, - "type": "CLIPTextEncode", - "pos": [ - 1958.7452854980445, - 266 - ], - "size": { - "0": 425.27801513671875, - "1": 180.6060791015625 - }, - "flags": {}, - "order": 3, - "mode": 0, - "inputs": [ - { - "name": "clip", - "type": "CLIP", - "link": 25 - } - ], - "outputs": [ - { - "name": "CONDITIONING", - "type": "CONDITIONING", - "links": [ - 22 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "CLIPTextEncode" - }, - "widgets_values": [ - "text, watermark" - ] - }, - { - "id": 24, - "type": "KSampler", - "pos": [ - 2434.0233006347635, - 80 - ], - "size": { - "0": 315, - "1": 262 - }, - "flags": {}, - "order": 8, - "mode": 0, - "inputs": [ - { - "name": "model", - "type": "MODEL", - "link": 20 - }, - { - "name": "positive", - "type": "CONDITIONING", - "link": 21 - }, - { - "name": "negative", - "type": "CONDITIONING", - "link": 22 - }, - { - "name": "latent_image", - "type": "LATENT", - "link": 23 - } - ], - "outputs": [ - { - "name": "LATENT", - "type": "LATENT", - "links": [ - 26 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "KSampler" - }, - "widgets_values": [ - 971428736321335, - "randomize", - 15, - 8, - "euler", - "karras", - 1 - ] - }, - { - "id": 29, - "type": "VAEDecode", - "pos": [ - 2799.0233006347635, - 80 - ], - "size": { - "0": 210, - "1": 46 - }, - "flags": { - "collapsed": false - }, - "order": 9, - "mode": 0, - "inputs": [ - { - "name": "samples", - "type": "LATENT", - "link": 26 - }, - { - "name": "vae", - "type": "VAE", - "link": 27 - } - ], - "outputs": [ - { - "name": "IMAGE", - "type": "IMAGE", - "links": [ - 31 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "VAEDecode" - } - }, - { - "id": 26, - "type": "EmptyLatentImage", - "pos": [ - 2069.0233006347635, - 80 - ], - "size": { - "0": 315, - "1": 106 - }, - "flags": {}, - "order": 0, - "mode": 0, - "outputs": [ - { - "name": "LATENT", - "type": "LATENT", - "links": [ - 23 - ], - "slot_index": 0 - } - ], - "properties": { - "Node name for S&R": "EmptyLatentImage" - }, - "widgets_values": [ - 512, - 512, - 1 - ] - }, - { - "id": 25, - "type": "CheckpointLoaderSimple", - "pos": [ - 1593.7452854980445, - 80 - ], - "size": { - "0": 315, - "1": 98 - }, - "flags": {}, - "order": 1, - "mode": 0, - "outputs": [ - { - "name": "MODEL", - "type": "MODEL", - "links": [ - 20 - ], - "slot_index": 0 - }, - { - "name": "CLIP", - "type": "CLIP", - "links": [ - 24, - 25 - ], - "slot_index": 1 - }, - { - "name": "VAE", - "type": "VAE", - "links": [ - 27 - ], - "slot_index": 2 - } - ], - "properties": { - "Node name for S&R": "CheckpointLoaderSimple" - }, - "widgets_values": [ - "deliberate_v2.safetensors" - ] - }, - { - "id": 31, - "type": "PreviewImage", - "pos": [ - 2439, - 408 - ], - "size": { - "0": 563.4671630859375, - "1": 720.8866577148438 - }, - "flags": {}, - "order": 10, - "mode": 0, - "inputs": [ - { - "name": "images", - "type": "IMAGE", - "link": 31 - } - ], - "properties": { - "Node name for S&R": "PreviewImage" - } - }, - { - "id": 44, - "type": "ShowTextForGPT", - "pos": [ - 1171, - 425 - ], - "size": { - "0": 432.46002197265625, - "1": 264.40771484375 - }, - "flags": {}, - "order": 6, - "mode": 0, - "inputs": [ - { - "name": "text", - "type": "STRING", - "link": 44, - "widget": { - "name": "text" - } - } - ], - "outputs": [ - { - "name": "STRING", - "type": "STRING", - "links": null, - "shape": 6 - } - ], - "properties": { - "Node name for S&R": "ShowTextForGPT" - }, - "widgets_values": [ - "[\n {\n \"role\": \"system\",\n \"content\": \"You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible.\"\n },\n {\n \"role\": \"user\",\n \"content\": \"\"\n }\n]" - ] - }, - { - "id": 43, - "type": "ShowTextForGPT", - "pos": [ - 1166, - 740 - ], - "size": { - "0": 424.0079650878906, - "1": 430.6391296386719 - }, - "flags": {}, - "order": 7, - "mode": 0, - "inputs": [ - { - "name": "text", - "type": "STRING", - "link": 45, - "widget": { - "name": "text" - } - } - ], - "outputs": [ - { - "name": "STRING", - "type": "STRING", - "links": null, - "shape": 6 - } - ], - "properties": { - "Node name for S&R": "ShowTextForGPT" - }, - "widgets_values": [ - "[\n {\n \"role\": \"user\",\n \"content\": \"\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"I'm sorry, I'm ChatGLM3-6B, not ChatGPT. I am a language model jointly trained by Tsinghua University KEG Lab and Zhipu AI Company.\"\n }\n]" - ] - }, - { - "id": 45, - "type": "ShowTextForGPT", - "pos": [ - 1092, - 262 - ], - "size": { - "0": 635.8358154296875, - "1": 101.46092224121094 - }, - "flags": {}, - "order": 4, - "mode": 0, - "inputs": [ - { - "name": "text", - "type": "STRING", - "link": 43, - "widget": { - "name": "text" - } - } - ], - "outputs": [ - { - "name": "STRING", - "type": "STRING", - "links": null, - "shape": 6 - } - ], - "properties": { - "Node name for S&R": "ShowTextForGPT" - }, - "widgets_values": [ - "I'm sorry, I'm ChatGLM3-6B, not ChatGPT. I am a language model jointly trained by Tsinghua University KEG Lab and Zhipu AI Company." - ] - }, - { - "id": 47, - "type": "ChatGPTOpenAI", - "pos": [ - 585, - 306 - ], - "size": { - "0": 400, - "1": 342 - }, - "flags": {}, - "order": 2, - "mode": 0, - "outputs": [ - { - "name": "text", - "type": "STRING", - "links": [ - 43, - 46 - ], - "shape": 3, - "slot_index": 0 - }, - { - "name": "messages", - "type": "STRING", - "links": [ - 44 - ], - "shape": 3, - "slot_index": 1 - }, - { - "name": "session_history", - "type": "STRING", - "links": [ - 45 - ], - "shape": 3, - "slot_index": 2 - } - ], - "properties": { - "Node name for S&R": "ChatGPTOpenAI" - }, - "widgets_values": [ - null, - null, - "", - "You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible.", - "gpt-3.5-turbo-16k", - 2220, - "randomize", - 1, - null - ] - } - ], - "links": [ - [ - 2, - 4, - 0, - 5, - 0, - "STRING" - ], - [ - 3, - 6, - 0, - 4, - 0, - "STRING" - ], - [ - 4, - 6, - 1, - 7, - 0, - "JSON" - ], - [ - 8, - 10, - 0, - 11, - 0, - "STRING" - ], - [ - 12, - 10, - 1, - 14, - 0, - "STRING" - ], - [ - 13, - 10, - 1, - 16, - 0, - "JSON" - ], - [ - 20, - 25, - 0, - 24, - 0, - "MODEL" - ], - [ - 21, - 27, - 0, - 24, - 1, - "CONDITIONING" - ], - [ - 22, - 28, - 0, - 24, - 2, - "CONDITIONING" - ], - [ - 23, - 26, - 0, - 24, - 3, - "LATENT" - ], - [ - 24, - 25, - 1, - 27, - 0, - "CLIP" - ], - [ - 25, - 25, - 1, - 28, - 0, - "CLIP" - ], - [ - 26, - 24, - 0, - 29, - 0, - "LATENT" - ], - [ - 27, - 25, - 2, - 29, - 1, - "VAE" - ], - [ - 31, - 29, - 0, - 31, - 0, - "IMAGE" - ], - [ - 43, - 47, - 0, - 45, - 0, - "STRING" - ], - [ - 44, - 47, - 1, - 44, - 0, - "STRING" - ], - [ - 45, - 47, - 2, - 43, - 0, - "STRING" - ], - [ - 46, - 47, - 0, - 27, - 1, - "STRING" - ] - ], - "groups": [], - "config": {}, - "extra": {}, - "version": 0.4 -} \ No newline at end of file diff --git a/workflow/6-gpt-all-workflow.json b/workflow/6-gpt-all-workflow.json deleted file mode 100644 index ffdc2c91..00000000 --- a/workflow/6-gpt-all-workflow.json +++ /dev/null @@ -1,251 +0,0 @@ -{ - "last_node_id": 5, - "last_link_id": 4, - "nodes": [ - { - "id": 4, - "type": "ChatGPTOpenAI", - "pos": [ - -512, - -236 - ], - "size": { - "0": 400, - "1": 342 - }, - "flags": {}, - "order": 0, - "mode": 0, - "outputs": [ - { - "name": "text", - "type": "STRING", - "links": [ - 2 - ], - "shape": 3, - "slot_index": 0 - }, - { - "name": "messages", - "type": "STRING", - "links": null, - "shape": 3 - }, - { - "name": "session_history", - "type": "STRING", - "links": null, - "shape": 3 - } - ], - "properties": { - "Node name for S&R": "ChatGPTOpenAI" - }, - "widgets_values": [ - null, - null, - "描述一个科幻的场景", - "You are ChatGPT, a large language model trained by OpenAI. Answer as concisely as possible.", - "gpt-35-turbo", - 6933, - "randomize", - 1, - null - ] - }, - { - "id": 2, - "type": "ChatGPTOpenAI", - "pos": [ - -36, - -234 - ], - "size": { - "0": 400, - "1": 342 - }, - "flags": {}, - "order": 1, - "mode": 0, - "inputs": [ - { - "name": "prompt", - "type": "STRING", - "link": 2, - "widget": { - "name": "prompt" - } - } - ], - "outputs": [ - { - "name": "text", - "type": "STRING", - "links": [ - 3 - ], - "shape": 3, - "slot_index": 0 - }, - { - "name": "messages", - "type": "STRING", - "links": null, - "shape": 3 - }, - { - "name": "session_history", - "type": "STRING", - "links": null, - "shape": 3 - } - ], - "properties": { - "Node name for S&R": "ChatGPTOpenAI" - }, - "widgets_values": [ - null, - null, - "", - "增加丰富的细节和光影,摄影技巧,镜头语言,材质肌理", - "gpt-3.5-turbo", - 2836, - "randomize", - 1, - null - ] - }, - { - "id": 5, - "type": "ChatGPTOpenAI", - "pos": [ - -30, - 183 - ], - "size": { - "0": 400, - "1": 342 - }, - "flags": {}, - "order": 2, - "mode": 0, - "inputs": [ - { - "name": "prompt", - "type": "STRING", - "link": 3, - "widget": { - "name": "prompt" - } - } - ], - "outputs": [ - { - "name": "text", - "type": "STRING", - "links": [ - 4 - ], - "shape": 3, - "slot_index": 0 - }, - { - "name": "messages", - "type": "STRING", - "links": null, - "shape": 3 - }, - { - "name": "session_history", - "type": "STRING", - "links": null, - "shape": 3 - } - ], - "properties": { - "Node name for S&R": "ChatGPTOpenAI" - }, - "widgets_values": [ - null, - null, - "", - "翻译成英文,并按照格式输出: 画面、主题、细节、灯光、氛围、艺术家、其他", - "gpt-3.5-turbo", - 1085, - "randomize", - 1, - null - ] - }, - { - "id": 3, - "type": "ShowTextForGPT", - "pos": [ - 447, - -229 - ], - "size": [ - 503.79851499517997, - 356.0560985581077 - ], - "flags": {}, - "order": 3, - "mode": 0, - "inputs": [ - { - "name": "text", - "type": "STRING", - "link": 4, - "widget": { - "name": "text" - } - } - ], - "outputs": [ - { - "name": "STRING", - "type": "STRING", - "links": null, - "shape": 6 - } - ], - "properties": { - "Node name for S&R": "ShowTextForGPT" - }, - "widgets_values": [ - "Picture: The picture is composed of carefully chosen elements, capturing the subject matter in a visually striking way.\n\nTheme: The theme of the photograph could vary, from capturing nature's beauty to showcasing urban landscapes, human emotions, or abstract concepts.\n\nDetails: The photograph captures intricate details, bringing attention to the subject's textures, colors, shapes, and patterns.\n\nLighting: The photographer manipulates lighting, using techniques like natural light, dramatic shadows, or artificial lighting to enhance the mood and atmosphere of the photograph.\n\nAmbiance: The photograph evokes a specific ambiance or mood, whether it's serene, mysterious, joyful, melancholic, or any other emotional response.\n\nArtist: The photographer skillfully crafts the image, demonstrating their artistic vision, technical skills, and creative expression through the composition, framing, and post-processing choices.\n\nOthers: Apart from the elements mentioned above, the photograph may also incorporate other creative techniques like long exposure, multiple exposures, color grading, or unconventional perspectives to create a unique and captivating image.\n\nIn the future, as technology and imagination continue to advance, photography will likely continue to evolve and innovate, offering even more realistic and awe-inspiring visual experiences for humans." - ] - } - ], - "links": [ - [ - 2, - 4, - 0, - 2, - 0, - "STRING" - ], - [ - 3, - 2, - 0, - 5, - 0, - "STRING" - ], - [ - 4, - 5, - 0, - 3, - 0, - "STRING" - ] - ], - "groups": [], - "config": {}, - "extra": {}, - "version": 0.4 -} \ No newline at end of file