-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplug-in.r
110 lines (88 loc) · 3.42 KB
/
plug-in.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
library(MASS)
getPriorProbabilities <- function (dset, column) {
dsetLength <- dim(dset)[1]
return (table(dset[, column]) / dsetLength)
}
getCovMatrix <- function(dset, expectation) {
featureTypesCount <- dim(dset)[2]
dsetLength <- dim(dset)[1]
cov <- matrix(0, nrow = featureTypesCount - 1, ncol = featureTypesCount - 1)
for (i in 1:dsetLength) {
currentFeature <- as.matrix(dset[i, 1:featureTypesCount - 1], nrow = 1)
tmp <- t(currentFeature - expectation) %*% (currentFeature - expectation)
cov <- cov + tmp
}
cov <- cov / (dsetLength - 1)
return(cov)
}
getLikelihood <- function(point, expectation, covMatrix) {
pointMinusMean <- t(as.matrix(point - expectation))
covMatrixInverse <- solve(covMatrix)
nom <- exp(-(pointMinusMean %*% covMatrixInverse %*% t(pointMinusMean)) / 2)
denom <- sqrt((2 * pi) ^ nrow(covMatrix) * det(covMatrix))
return(nom / denom)
}
getPlugInProbability <- function(dset, classesColumn, className, point, lambda) {
featuresCount <- length(point)
croppedDset <- dset[which(dset[, classesColumn] == className), ]
dsetLength <- dim(dset)[1]
prior <- getPriorProbabilities(dset, classesColumn)[className]
expectations <- array(dim = featuresCount)
for (i in 1:featuresCount) {
expectations[i] <- mean(croppedDset[, i])
}
# lambda = rep(1, featuresCount)
covMatrix <- getCovMatrix(croppedDset, matrix(expectations, nrow=1))
likelihood <- getLikelihood(point, expectations, covMatrix)
probability <- lambda * prior * likelihood;
return (probability)
}
plugInClassifier <- function(point, dset) {
classes <- unique(dset[, 3])
classesCount <- length(classes)
scores <- array(dim = classesCount)
for (i in 1:classesCount) {
scores[i] <- getPlugInProbability(dset, 'class', classes[i], point, lambdas[i])
}
return(classes[which.max(scores)])
}
# mu1 <- c(0, 0)
# mu2 <- c(4, 4)
# sig1 <- matrix(c(2, 0.9, 0.9, 2), 2, 2)
# sig2 <- matrix(c(0.5, 0, 0, 2), 2, 2)
# dset1 <- mvrnorm(250, mu1, sig1)
# dset2 <- mvrnorm(250, mu2, sig2)
# dset <- rbind(cbind(dset1, 1),cbind(dset2, 2))
dset = data.frame(x = double(), y = double(), class = character())
dset <- rbind(dset, data.frame(x = 0, y = 2, class = 1))
dset <- rbind(dset, data.frame(x = 2, y = 0, class = 1))
dset <- rbind(dset, data.frame(x = 2.5, y = 2.5, class = 1))
dset <- rbind(dset, data.frame(x = 2.8, y = 2.8, class = 1))
dset <- rbind(dset, data.frame(x = 2, y = 4.5, class = 2))
dset <- rbind(dset, data.frame(x = 4.5, y = 2, class = 2))
dset <- rbind(dset, data.frame(x = 6, y = 6, class = 2))
dset <- rbind(dset, data.frame(x = 6, y = 5, class = 2))
dset <- rbind(dset, data.frame(x = 5, y = 6, class = 2))
dset <- rbind(dset, data.frame(x = 3, y = 5.5, class = 2))
dset <- rbind(dset, data.frame(x = 5.5, y = 3, class = 2))
plot(dset[ ,1], dset[ ,2], pch=21, bg=c("green","blue")[dset[ ,3]])
# print(plugInClassifier(c(0, 0), dset))
# # print(getPlugInProbability(dset, 3, 1, c(0, 0), 1))
## generating map
colors <- c("1" = "green", "2" = "blue")
xs <- seq(from = -5, to = 7, by = 0.2)
ys <- seq(from = -5, to = 7, by = 0.2)
## lambdas <- runif(2, min=1, max=100)
lambdas = c(1, 1)
print(lambdas)
all <- length(xs) * length(ys)
progress = 1
for (i in xs) {
for (j in ys) {
cat("\rProcessing point", progress, "of", all)
progress <- progress + 1
result <- plugInClassifier(c(i, j), dset)
points(i, j, col = colors[result], pch = 21)
}
}
cat("\rDone. \n")