-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path001_sharing.py
177 lines (150 loc) · 6.88 KB
/
001_sharing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import time
import numpy as np
import tensorflow as tf
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import tensorflow_server_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import data_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import input as input_ops
from tensorflow.python.training import queue_runner_impl
from tensorflow.python.training import server_lib
import train_runner
from train_flags import FLAGS
from pprint import pprint as pp
from model_fns import gpt2_model
from input_fns import gpt2_input
import json
class GrpcServerTest(test.TestCase):
def __init__(self, methodName="runTest"): # pylint: disable=invalid-name
super(GrpcServerTest, self).__init__(methodName)
self._cached_server = server_lib.Server.create_local_server()
def testRunStep(self):
server = self._cached_server
with session.Session(server.target) as sess:
c = constant_op.constant([[2, 1]])
d = constant_op.constant([[1], [2]])
e = math_ops.matmul(c, d)
self.assertAllEqual([[4]], sess.run(e))
# TODO(mrry): Add `server.stop()` and `server.join()` when these work.
@test_util.run_v1_only("b/120545219")
def testMultipleSessions(self):
server = self._cached_server
c = constant_op.constant([[2, 1]])
d = constant_op.constant([[1], [2]])
e = math_ops.matmul(c, d)
sess_1 = session.Session(server.target)
sess_2 = session.Session(server.target)
self.assertAllEqual([[4]], sess_1.run(e))
self.assertAllEqual([[4]], sess_2.run(e))
sess_1.close()
sess_2.close()
# TODO(mrry): Add `server.stop()` and `server.join()` when these work.
@test_util.run_v1_only("b/120545219")
def testIsolateSessionState(self):
server = self._cached_server
init_value = array_ops.placeholder(dtypes.int32)
v = variables.VariableV1(init_value, validate_shape=False, name="v")
sharing_config = config_pb2.ConfigProto(isolate_session_state=False)
sharing_sess_0 = session.Session(server.target, config=sharing_config)
sharing_sess_1 = session.Session(server.target, config=sharing_config)
isolate_config = config_pb2.ConfigProto(isolate_session_state=True)
isolate_sess_0 = session.Session(server.target, config=isolate_config)
isolate_sess_1 = session.Session(server.target, config=isolate_config)
# Initially all variables are initialized.
for sess in [sharing_sess_0, sharing_sess_1,
isolate_sess_0, isolate_sess_1]:
with self.assertRaises(errors_impl.FailedPreconditionError):
sess.run(v)
# Shared sessions will see each other's updates, but isolated sessions
# will not.
sharing_sess_0.run(v.initializer, feed_dict={init_value: 86})
self.assertAllEqual(86, sharing_sess_0.run(v))
self.assertAllEqual(86, sharing_sess_1.run(v))
with self.assertRaises(errors_impl.FailedPreconditionError):
isolate_sess_0.run(v)
with self.assertRaises(errors_impl.FailedPreconditionError):
isolate_sess_1.run(v)
# Changing the shape works because `validate_shape` is False.
sharing_sess_1.run(v.initializer, feed_dict={init_value: [86, 99]})
self.assertAllEqual([86, 99], sharing_sess_0.run(v))
self.assertAllEqual([86, 99], sharing_sess_1.run(v))
with self.assertRaises(errors_impl.FailedPreconditionError):
isolate_sess_0.run(v)
with self.assertRaises(errors_impl.FailedPreconditionError):
isolate_sess_1.run(v)
# Initializing in an isolated session will only affect the state in that
# session.
isolate_sess_0.run(v.initializer, feed_dict={init_value: 37})
self.assertAllEqual([86, 99], sharing_sess_0.run(v))
self.assertAllEqual([86, 99], sharing_sess_1.run(v))
self.assertAllEqual(37, isolate_sess_0.run(v))
with self.assertRaises(errors_impl.FailedPreconditionError):
isolate_sess_1.run(v)
# Isolated sessions can have different shapes for the same variable.
isolate_sess_1.run(v.initializer, feed_dict={init_value: [19, 86]})
self.assertAllEqual([86, 99], sharing_sess_0.run(v))
self.assertAllEqual([86, 99], sharing_sess_1.run(v))
self.assertAllEqual(37, isolate_sess_0.run(v))
self.assertAllEqual([19, 86], isolate_sess_1.run(v))
@test_util.run_v1_only("b/120545219")
def testTrainRunner(self):
#FLAGS.iterations_per_loop = 100
#params = {'batch_size': FLAGS.train_batch_size}
#params = {'batch_size': 128, 'use_tpu': True, 'precision': 'float32'}
with open(FLAGS.params) as f:
params = json.load(f)
params['use_tpu'] = True
batch_size_per_core = params['batch_size_per_core'] if 'batch_size_per_core' in params else 1
FLAGS.train_batch_size = FLAGS.num_cores * batch_size_per_core
FLAGS.iterations_per_loop = 20 if 'iterations' not in params else params['iterations']
FLAGS.train_steps = 2000
params['batch_size'] = FLAGS.train_batch_size
if 'precision' not in params:
params['precision'] = 'float32'
pp(params)
trunner = train_runner.TrainRunner(
iterations=FLAGS.iterations_per_loop, train_steps=FLAGS.train_steps)
def input_fn(params):
tokens = [[_ for _ in range(0, 1024)]] * params['batch_size']
labels = [[_ for _ in range(1, 1025)]] * params['batch_size']
t = tf.broadcast_to(tokens, [len(tokens), len(tokens[0])])
l = tf.broadcast_to(labels, [len(labels), len(labels[0])])
#dset1 = tf.data.Dataset.from_tensor_slices(t);
#dset2 = tf.data.Dataset.from_tensor_slices(l);
dset1 = tf.data.Dataset.from_tensors(t);
dset2 = tf.data.Dataset.from_tensors(l);
dset = tf.data.Dataset.zip((dset1, dset2))
dset = dset.repeat()
return dset
def create_train_op(loss, params):
return tf.identity(loss)
def model_fn(features, labels, mode, params):
pp(['features', features])
pp(['labels', labels])
pp(['mode', mode])
pp(['params', params])
loss = tf.constant(0.0)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = create_train_op(loss, params)
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
trunner.initialize(gpt2_input, gpt2_model, params)
pp(params)
tf.logging.info('trunner.initialize(): Done. Training...')
trunner.train()
tf.logging.info('trunner.train(): Done. Shutting down...')
trunner.shutdown()
tf.logging.info('trunner.shutdown(): Done.')
if __name__ == "__main__":
test.main()