-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_fns.py
106 lines (82 loc) · 4.23 KB
/
model_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import tensorflow as tf
from models.gpt2 import gpt2, gpt2_rev
from optimizers import create_train_op
from metric_fns import perplexity_metric
from models.gpt2 import sample
def gpt2_rev_model(features, labels, mode, params):
tf.logging.info('model_fns.py: gpt2_rev_model(features=%s, labels=%s, mode=%s, params=%s)', features, labels, mode, params)
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if params["precision"] == 'bfloat16':
with tf.contrib.tpu.bfloat16_scope():
output = gpt2_rev.model_grad(X=features,
params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
output["logits"] = tf.cast(output["logits"], tf.float32)
else:
output = gpt2_rev.model_grad(X=features, params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
if mode == tf.estimator.ModeKeys.TRAIN:
#from optimizers import create_train_op
grads = output["grads_and_vars"]
train_op = create_train_op(params, grads=grads)
loss = output["loss"]
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
else:
raise NotImplementedError()
def gpt2_model(features, labels, mode, params):
tf.logging.info('model_fns.py: gpt2_model(features=%s, labels=%s, mode=%s, params=%s)', features, labels, mode, params)
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if params["precision"] == 'bfloat16':
with tf.contrib.tpu.bfloat16_scope():
output = gpt2.model(X=features, params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
output["logits"] = tf.cast(output["logits"], tf.float32)
else:
output = gpt2.model(X=features, params=params,
labels=labels,
past=None, reuse=tf.AUTO_REUSE,
train=mode==tf.estimator.ModeKeys.TRAIN)
loss_batch = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=output["logits"], labels=labels)
loss = tf.reduce_mean(loss_batch)
if mode == tf.estimator.ModeKeys.TRAIN:
#from optimizers import create_train_op
train_op = create_train_op(params, loss=loss)
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
else:
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
if mode == tf.estimator.ModeKeys.EVAL:
#from metric_fns import perplexity_metric
if params["use_tpu"]:
# Metric inputs are transferred to CPU and must preserve batch dimension
return tf.contrib.tpu.TPUEstimatorSpec(mode=mode,
loss=loss, eval_metrics=(perplexity_metric, {"loss": loss_batch}))
else:
return tf.estimator.EstimatorSpec(mode=mode,
loss=loss, eval_metric_ops=perplexity_metric(loss_batch))
if mode == tf.estimator.ModeKeys.PREDICT:
#from models.gpt2 import sample
if not "top_k" in params.keys():
params["top_k"] = 0
output = sample.sample_sequence(
params=params, length=min(params['length'] - params['text_len'], params["n_ctx"]),
context=features,
batch_size=params["batch_size"],
temperature=1.0, top_k=params["top_k"]
)
predictions = {
"tokens": output
}
if params["use_tpu"]:
return tf.contrib.tpu.TPUEstimatorSpec(mode, predictions=predictions)
else:
return tf.estimator.EstimatorSpec(mode, predictions=predictions)