-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwrapper.py
409 lines (347 loc) · 15.2 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pprint import pprint as pp
from pprint import pformat as pf
from contextlib import contextmanager
import sys
import os
import re
import six
import json
import base64
from six.moves.urllib.error import URLError
from tensorflow.python.eager import context
from tensorflow.python import framework
from tensorflow.python.client import session
from tensorflow.python.distribute.cluster_resolver import tpu_cluster_resolver as resolver
from tensorflow.compat.v1.distribute.cluster_resolver import TPUClusterResolver as BaseTPUClusterResolver
from tensorflow.python.eager.context import LogicalDevice
from tensorflow.python.framework import errors
from tensorflow.python.framework import test_util
from tensorflow.python.platform import test
from tensorflow.python.training import server_lib
from tensorflow.python.util import compat
from tensorflow.core.protobuf.tpu import topology_pb2
from tensorflow.python.tpu import topology as topology_lib
import gin
try:
from cloud_tpu_client import client # pylint: disable=g-import-not-at-top
except ImportError:
try:
logging.debug(
'Falling back to TensorFlow client; we recommended you install the Cloud '
'TPU client directly with pip install cloud-tpu-client.')
from tensorflow.python.tpu.client import client # pylint: disable=g-import-not-at-top
except ImportError:
client = None
mock = test.mock
def reroute(addr, host=None):
if host is None or host is False:
return addr
if addr.startswith('grpc://'):
return 'grpc://' + reroute(addr[len('grpc://'):], host=host)
if not re.match('[0-9]+[.][0-9]+[.][0-9]+[.][0-9]+[:]8470', addr):
return addr
if not addr.endswith(':8470'):
return addr
a, b, c, d = [int(x) for x in addr.split(':')[0].split('.')]
if a == 10 and b in [48, 49]:
assert (d == 2)
port = b * 1000 + c
elif a == 10 and b in range(2, 66) and c == 0:
port = b * 1000 + d
else:
return addr
return host + ':' + str(port)
class TPUClusterResolver(BaseTPUClusterResolver):
def __init__(self, *args, host=None, node_count=None, node_offset=None, **kws):
kws['project'] = kws.pop('project', 'gpt-2-15b-poetry')
super(TPUClusterResolver, self).__init__(*args, **kws)
if host is None:
host = _tpu_host()
self._host = host
if node_count is None:
if 'TPU_NODE_COUNT' in os.environ:
node_count = int(os.environ['TPU_NODE_COUNT'])
self._node_count = node_count
if node_offset is None:
if 'TPU_NODE_OFFSET' in os.environ:
node_offset = int(os.environ['TPU_NODE_OFFSET'])
self._node_offset = node_offset
def master(self, *args, **kws):
ip = super(TPUClusterResolver, self).master(*args, **kws)
return reroute(ip, host=self._host)
def cluster_spec(self):
spec = super(TPUClusterResolver, self).cluster_spec()
r = dict()
for k, v in spec.as_dict().items():
r[k] = [reroute(ip, host=self._host) for ip in v]
#k = 'worker'
i = self._node_count or len(r[k])
j = self._node_offset or 0
for k, v in r.items():
r[k] = [r[k][0]] + r[k][(j+1):(j+1)+(i-1)]
spec2 = server_lib.ClusterSpec(r)
print(spec2.as_cluster_def())
return spec2
from six.moves.urllib import request
def _as_text(s):
if isinstance(s, bytes):
return s.decode('utf-8')
return s
def _request_compute_metadata(path):
_GCE_METADATA_ENDPOINT = 'http://35.225.160.61'
req = request.Request(
'%s/computeMetadata/v1/%s' % (_GCE_METADATA_ENDPOINT, path),
headers={'Metadata-Flavor': 'Google'})
resp = request.urlopen(req)
return _as_text(resp.read())
# cli = client.Client(tpu=os.environ['TPU_NAME'])
# service = cli._tpu_service()
# info = service.projects().locations().nodes().get(name=cli._full_name().replace(os.environ['TPU_NAME'], 'tpu-v2-8-usc1f-0')).execute()
# {'name': 'projects/gpt-2-15b-poetry/locations/us-central1-f/nodes/tpu-v2-8-usc1f-0', 'acceleratorType': 'v2-8', 'ipAddress': '10.48.0.2', 'state': 'READY', 'tensorflowVersion': '2.3', 'network': 'global/networks/tpu-usc1f', 'cidrBlock': '10.48.0.0/29', 'port': '8470', 'serviceAccount': '[email protected]', 'createTime': '2020-09-18T07:21:45.237850246Z', 'schedulingConfig': {'preemptible': True}, 'networkEndpoints': [{'ipAddress': '10.48.0.2', 'port': 8470}], 'health': 'HEALTHY'}
_master = resolver.TPUClusterResolver.master
def _tpu_host():
return os.environ.get('TPU_HOST', '10.255.128.3')
def mock_master(cls, *args, **kws):
ip = _master(cls, *args, **kws)
return reroute(ip, host=os.environ.get('TPU_HOST', None))
_cluster_spec = resolver.TPUClusterResolver.cluster_spec
def cluster_spec(cls, *args, **kws):
spec = _cluster_spec(cls, *args, **kws)
r = dict()
for k, v in spec.as_dict().items():
r[k] = [reroute(ip, host=os.environ.get('TPU_HOST', None)) for ip in v]
return server_lib.ClusterSpec(r)
__fetch_cloud_tpu_metadata = (client.Client if client is not None else resolver.TPUClusterResolver)._fetch_cloud_tpu_metadata
def _fetch_cloud_tpu_metadata(cls, *args, **kws):
while True:
try:
return __fetch_cloud_tpu_metadata(cls, *args, **kws)
except Exception as e:
if '[Errno 111] Connection refused' in str(e):
# retry
import time
time.sleep(1.0)
else:
raise e
__parse_topology = topology_lib.Topology._parse_topology
def _parse_topology(self, serialized):
"""Parses a serialized `TopologyProto` into `self`."""
proto = topology_pb2.TopologyProto()
proto.ParseFromString(serialized)
self._mesh_shape = np.array(proto.mesh_shape, dtype=np.int32)
if len(self._mesh_shape) != 4 or any(self._mesh_shape < 1):
return __parse_topology(self, serialized)
raise ValueError("`mesh_shape` must be a vector of size 4 with positive "
"entries; got {}".format(self._mesh_shape))
if proto.num_tasks < 0:
raise ValueError("`num_tasks` must be >= 0; got {}".format(
proto.num_tasks))
if proto.num_tpu_devices_per_task < 0:
raise ValueError("`num_tpu_devices_per_task` must be >= 0; got {}".format(
proto.num_tpu_devices_per_task))
expected_coordinates_size = (
proto.num_tasks * proto.num_tpu_devices_per_task * len(
proto.mesh_shape))
if len(proto.device_coordinates) != expected_coordinates_size:
raise ValueError("`device_coordinates` must have shape num_tasks ({}) * "
"num_tpu_devices_per_task ({}) * len(mesh_shape) ({}); "
"got shape {}".format(proto.num_tasks,
proto.num_tpu_devices_per_task,
proto.mesh_shape,
len(proto.device_coordinates)))
coords = np.array(proto.device_coordinates, dtype=np.int32)
if any(coords < 0):
raise ValueError("`device_coordinates` must be >= 0")
coords = coords.reshape((proto.num_tasks, proto.num_tpu_devices_per_task,
len(proto.mesh_shape)))
self._device_coordinates = coords
__invert_topology = topology_lib.Topology._invert_topology
def _invert_topology(self):
"""Inverts a [task,device,axis] topology to [x,y,z] -> task/device maps."""
if len(self.mesh_shape) != 4 or any(self.mesh_shape < 1):
return __invert_topology(self)
tasks = np.full(list(self.mesh_shape), -1, dtype=np.int32)
devices = np.full(list(self.mesh_shape), -1, dtype=np.int32)
for task in range(self.device_coordinates.shape[0]):
for device in range(self.device_coordinates.shape[1]):
x, y, z, core = self.device_coordinates[task, device, :]
tasks[x, y, z, core] = task
devices[x, y, z, core] = device
return tasks, devices
@contextmanager
def patch_tensorflow():
with mock.patch.object(resolver.TPUClusterResolver, 'master', mock_master):
with mock.patch.object(resolver.TPUClusterResolver, 'cluster_spec', cluster_spec):
with mock.patch.object(client.Client if client is not None else resolver.TPUClusterResolver, '_fetch_cloud_tpu_metadata', _fetch_cloud_tpu_metadata):
with mock.patch.object(topology_lib.Topology, '_parse_topology', _parse_topology):
with mock.patch.object(topology_lib.Topology, '_invert_topology', _invert_topology):
result = yield
return result
def patch_tensorflow_interactive():
patch = patch_tensorflow()
patch.__enter__()
gin.enter_interactive_mode()
return patch
def interact():
import code
code.InteractiveConsole(locals=globals()).interact()
def clone_session(session=None, graph=None, interactive=False, **kws):
if session is None:
session = tf.get_default_session()
if graph is None:
graph = session.graph
config = session._config # is there a better way to do this?
master = session.sess_str # is there a better way to do this?
Session = (tf.compat.v1.InteractiveSession if interactive else tf.Session)
return Session(master, graph=graph, config=config, **kws)
def reset_session(session=None, graph=None, interactive=True, **kws):
if session is None:
session = tf.get_default_session()
if graph is None:
graph = tf.Graph()
graph.as_default().__enter__()
session2 = clone_session(session, graph=graph, interactive=interactive, **kws)
session2.as_default().__enter__()
if 'sess' in globals():
globals()['sess'] = session2
return session2
from tensorflow.python.distribute import values
def enclosing_tpu_context():
return values._enclosing_tpu_context()
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python.client import session
from tensorflow.python.debug.lib import debug_data
from tensorflow.python.debug.lib import debug_gradients
from tensorflow.python.debug.lib import debug_utils
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.lib.io import file_io
from tensorflow.python.ops import gradients_impl
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import googletest
from tensorflow.python.training import gradient_descent
if __name__ == '__main__':
_tf_patch = patch_tensorflow_interactive()
if len(sys.argv) <= 1:
from tensorflow.core.protobuf import config_pb2
import tensorflow as tf
tf1 = tf.compat.v1
tf.compat.v1.logging.set_verbosity('DEBUG')
import numpy as np
#session_config = config_pb2.ConfigProto(allow_soft_placement=True, isolate_session_state=True)
rpc_options = config_pb2.RPCOptions()
# Setting cache_rpc_response to true will enable sender side caching of
# response for RecvTensorAsync and RecvBufAsync to allow receiver to retry
# requests . This is only necessary when the network fabric is experiencing a
# significant error rate. Without it we'll fail a step on an network error,
# while with it we'll be able to complete long steps (like complex
# initializations) in the face of some network errors during RecvTensor.
rpc_options.cache_rpc_response = True
rewriter_config = rewriter_config_pb2.RewriterConfig(
disable_model_pruning=True,
disable_meta_optimizer=True,
dependency_optimization=rewriter_config_pb2.RewriterConfig.OFF,
fail_on_optimizer_errors=True,
)
graph_options = config_pb2.GraphOptions(
rewrite_options=rewriter_config,
place_pruned_graph=True,
infer_shapes=True,
)
session_config = config_pb2.ConfigProto(
graph_options=graph_options,
allow_soft_placement=True,
isolate_session_state=False,
)
# share variables across sessions on TPUs
session_config.experimental.share_session_state_in_clusterspec_propagation = True
# TODO: research this. What does it do?
# session_config.share_cluster_devices_in_session = True
master = None
res = None
cluster_spec = None
cluster_def = None
job_names = None
master_job = 'worker'
try:
if 'TPU_NAME' in os.environ:
res = TPUClusterResolver(os.environ['TPU_NAME'])
master = res.get_master()
cluster_spec = res.cluster_spec()
if cluster_spec:
cluster_def = cluster_spec.as_cluster_def()
session_config.cluster_def.CopyFrom(cluster_def)
job_names = set([job.name for job in cluster_def.job])
assert len(job_names) == 1
master_job = cluster_def.job[0].name
elif 'TPU_IP' in os.environ:
master = os.environ['TPU_IP'].replace('grpc://', '')
if ':' not in master:
master = master + ':8470'
master = 'grpc://' + master
except:
import traceback
traceback.print_exc()
graph = tf.Graph()
sess = tf.compat.v1.InteractiveSession(master, graph=graph, config=session_config)
devices = sess.list_devices()
cores = sorted([x.name for x in devices if ':TPU:' in x.name])
num_cores = len(cores)
print(cluster_def)
print('cores: %d ip: %s' % (num_cores, master))
r = sess.run
from importlib import reload
import tf_tools as tft
from tensorflow.python.tpu import tpu as tpu_ops
from tensorflow.compiler.tf2xla.python import xla
from tensorflow.compiler.tf2xla.ops import gen_xla_ops
from tensorflow.python.tpu import tpu_strategy_util
from tensorflow.python.tpu import device_assignment as device_assignment_lib
from tensorflow.python.tpu import topology as topology_lib
tpu_topology = None
topology_cache = {}
try:
with open('topology.cache', 'r') as f:
topology_cache = json.load(f)
except FileNotFoundError:
pass
def cached_topology(name=None):
if name is None:
name = os.environ.get('TPU_NAME', None)
result = topology_cache.get(name, None)
if result is not None:
serialized = base64.b64decode(result)
return topology_lib.Topology(serialized=serialized)
def get_topology():
global tpu_topology
tpu_topology = cached_topology()
if tpu_topology is None:
tpu_topology = tpu_strategy_util.initialize_tpu_system(res)
topology_cache.update({os.environ['TPU_NAME']: base64.b64encode(tpu_topology.serialized()).decode('utf8')})
with open('topology.cache', 'w') as f:
f.write(json.dumps(topology_cache))
return tpu_topology
def get_task_and_cores_to_replicas():
return device_assignment_lib._compute_task_and_cores_to_replicas(tpu_topology.device_coordinates, tpu_topology)
def get_core_assignment(*core_ids):
return device_assignment_lib.DeviceAssignment(get_topology(), [[get_topology().device_coordinates[0][i]] for i in core_ids])
def get_device_assignment(num_replicas, computation_shape=None, topology=None):
if topology is None:
topology = get_topology()
if computation_shape is None:
computation_shape = [1, 1, 1, 2]
device_assignment = tf.tpu.experimental.DeviceAssignment.build(topology, computation_shape=computation_shape, num_replicas=num_replicas)
return device_assignment
tpu_topology = cached_topology()
else:
filename = sys.argv[1]
sys.argv = sys.argv[1:]
with open(filename) as f:
source = f.read()
code = compile(source, filename, 'exec')
exec(code, globals(), globals())