-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathresnet-small.py
108 lines (102 loc) · 5.09 KB
/
resnet-small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
'''
MSRA Paper: http://arxiv.org/pdf/1512.03385v1.pdf
'''
import mxnet as mx
import logging
def ConvFactory(data, num_filter, kernel, stride=(1, 1), pad=(0, 0), act_type = 'relu',last=False):
conv = mx.symbol.Convolution(data = data, num_filter = num_filter, kernel = kernel, stride = stride, pad = pad)
if last:
return conv
else:
bn = mx.symbol.BatchNorm(data=conv)
act = mx.symbol.Activation(data=bn, act_type=act_type)
return act
def ResidualFactory(data, num_filter, diff_dim=False):
if diff_dim:
conv1 = ConvFactory( data=data, num_filter=num_filter[0], kernel=(3,3), stride=(2,2), pad=(1,1), last=False)
conv2 = ConvFactory( data=conv1, num_filter=num_filter[1], kernel=(3,3), stride=(1,1), pad=(1,1), last=True)
_data = mx.symbol.Convolution(data=data, num_filter=num_filter[1], kernel=(3,3), stride=(2,2), pad=(1,1))
data = _data+conv2
bn = mx.symbol.BatchNorm(data=data)
act = mx.symbol.Activation(data=bn, act_type='relu')
return act
else:
_data=data
conv1 = ConvFactory(data=data, num_filter=num_filter[0], kernel=(3,3), stride=(1,1), pad=(1,1), last=False)
conv2 = ConvFactory(data=conv1, num_filter=num_filter[1], kernel=(3,3), stride=(1,1), pad=(1,1), last=True)
data = _data+conv2
bn = mx.symbol.BatchNorm(data=data)
act = mx.symbol.Activation(data=bn, act_type='relu')
return act
def ResidualSymbol(data, n=9):
"stage 1"
for i in xrange(n):
data = ResidualFactory(data, (16, 16))
"stage 2"
for i in xrange(n):
if i == 0:
data = ResidualFactory(data, (32, 32), True)
else:
data = ResidualFactory(data, (32, 32))
"stage 3"
for i in xrange(n):
if i == 0:
data = ResidualFactory(data, (64, 64), True)
else:
data = ResidualFactory(data, (64, 64))
return data
def get_dataiter(batch_size=128):
data_shape=(3,28,28)
train_dataiter = mx.io.ImageRecordIter(
path_imgrec = "./data/cifar10/train.rec",
mean_img = "./data/cifar10/mean.bin",
rand_crop = True,
rand_mirror = True,
shuffle = True,
data_shape = data_shape,
batch_size = batch_size,
preprocess_threads = 2,
prefetch_buffer = 2,
)
test_dataiter = mx.io.ImageRecordIter(
path_imgrec = "./data/cifar10/test.rec",
mean_img = "./data/cifar10/mean.bin",
rand_crop = False,
rand_mirror = False,
data_shape = data_shape,
batch_size = batch_size,
preprocess_threads = 2,
prefetch_buffer = 2,
)
return train_dataiter, test_dataiter
if __name__=='__main__':
logging.basicConfig(level=logging.DEBUG)
data = ConvFactory(data=mx.symbol.Variable(name='data'), num_filter=16, kernel=(3,3), stride=(1,1), pad=(1,1)) # before residual net
res = ResidualSymbol(data) # get residual net
pool = mx.symbol.Pooling(data=res, kernel=(7,7), pool_type='avg') # global pooling + classify
flatten = mx.symbol.Flatten(data=pool, name='flatten')
fc = mx.symbol.FullyConnected(data=flatten, num_hidden=10, name='fc1') # set num_hidden=1000 when test on ImageNet competition dataset
softmax = mx.symbol.SoftmaxOutput(data=fc, name='softmax')
# uncomment the following two line to visualize resnet
g=mx.visualization.plot_network(softmax)
g.render(filename='resnet', cleanup=True)
batch_size = 128
train_dataiter, test_dataiter = get_dataiter(batch_size=batch_size)
finetune=False
if finetune==False:
model = mx.model.FeedForward(ctx=mx.gpu(0), symbol=softmax, num_epoch=70, learning_rate=0.1, momentum=0.9, wd=0.0001, \
initializer=mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2),
# initializer=mx.init.Xavier(),
# initializer=mx.init.Normal(),
lr_scheduler=mx.lr_scheduler.FactorScheduler(step =100000000000, factor = 0.95)
)
moniter=mx.monitor.Monitor(1)
batch_end_callback=[mx.callback.Speedometer(batch_size=batch_size, frequent=100),
# mx.callback.ProgressBar(50000.0/batch_size)
]
model.fit(X=train_dataiter, eval_data=test_dataiter, monitor=None ,batch_end_callback=batch_end_callback, epoch_end_callback=mx.callback.do_checkpoint("./models/resnet"))
else:
loaded = mx.model.FeedForward.load('models/resnet', 100)
continue_model = mx.model.FeedForward(ctx=mx.gpu(0), symbol = loaded.symbol, arg_params = loaded.arg_params, aux_params = loaded.aux_params, num_epoch=10000, learning_rate=0.01, momentum=0.9, wd=0.0001)
continue_model.fit(X=train_dataiter, eval_data=test_dataiter, batch_end_callback=mx.callback.Speedometer(batch_size),epoch_end_callback=mx.callback.do_checkpoint("./models/resnet"))