-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmutual_info.py
29 lines (18 loc) · 948 Bytes
/
mutual_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from sklearn.feature_selection import mutual_info_classif
import pandas as pd
from utils.data_preprocess import generate_final_training_dataset
from logger import Logger
if __name__ == '__main__':
logger = Logger(show = True, html_output = True, config_file = "config.txt")
final_df = generate_final_training_dataset("large", logger)
final_df.drop(['EMB_' + str(i) for i in range(1, 101)], axis = 1, inplace = True)
X = final_df.iloc[:, :-2].values
y = final_df.iloc[:, -2].values
y = (y > 0.5) * 1
mutual_info = mutual_info_classif(X, y)
mutual_info /= mutual_info.max()
mutual_info_pair = zip(final_df.columns.values[:-2], mutual_info)
mutual_info_pair = sorted(mutual_info_pair, key=lambda tup: tup[1], reverse = True)
feats_names, mutual_info = zip(*mutual_info_pair)
results = pd.DataFrame([mutual_info], columns = feats_names)
results.to_csv(logger.get_output_file("large_mutual_info.csv"), index = False)