-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptima.py
306 lines (238 loc) · 13.5 KB
/
optima.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 4 22:25:54 2021
@author: mahesh
"""
import streamlit as st
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from plotly.subplots import make_subplots
import plotly.figure_factory as ff
import random
#------------------------feature scale imports---------------------
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
#-------------------classification imports---------------------
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
#-------------------regression imports---------------------------
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
#-------------------classification metrics-------------------------
from sklearn.metrics import accuracy_score,confusion_matrix,f1_score,precision_score,recall_score,roc_curve,auc
from tqdm import tqdm
#------------------- regression metrics----------------------------
from sklearn.metrics import max_error,mean_absolute_error,mean_squared_error,r2_score, mean_absolute_percentage_error
st.set_page_config(page_title = "Lumin", layout = "wide")
def compute_reg(data,target):
st.title("Regression Report")
#------------------preprocessing-------------------------
drop_str = [col for col in data.columns if type(data[col][0]) == str]
data_head = data.copy(deep = True) #is used in presentation
data = data.drop(drop_str,axis = 1)
data = data.drop(target.name, axis = 1) #dropping y from data
corr_mat = data_head.corr() # for later use in presentation
pca = False # FIX THIS!
if len(data.columns) > 2:
pca = True
#-------------------feature scaling--------------------------------
sc_1 = StandardScaler()
sc_2 = StandardScaler()
x_scaled = sc_1.fit_transform(data)
y_scaled = sc_2.fit_transform(np.array(target).reshape(-1,1))
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y_scaled ,test_size = 0.2,
random_state = 177013)
#----------PCA only if >2 cols---------------
if pca == True:
pca = PCA(n_components = 2)
x_train = pd.DataFrame(data = pca.fit_transform(x_train),columns = ['pc1',"pc2"]).iloc[:,:].values
x_test = pca.transform(x_test)
#------------------------------------------model_building-------------------------
#----------------POLYNOMIAL REGRESSION is disqualified for reasons
regression_models = {"LINEAR_REG":LinearRegression(),"SVR":SVR(),"DTR":DecisionTreeRegressor(),
"RFR":RandomForestRegressor(n_estimators = 400),
"XGBR": GradientBoostingRegressor(n_estimators = 400)}
metric_dict = {}
for name,algorithm in tqdm(regression_models.items()):
model = algorithm
model.fit(x_train,y_train.ravel())
y_pred = model.predict(x_test)
metric_dict[name] = {"Max_error":round(max_error(y_test, y_pred),5),
"MAE":round(mean_absolute_error(y_test, y_pred),3),
"MSE": round(mean_squared_error(y_test, y_pred),3),
"R2-score": round(r2_score(y_test, y_pred),5),
"RMSE" : round(mean_squared_error(y_test, y_pred,squared = False),3),
"MAPE": round(mean_absolute_percentage_error(y_test,y_pred),3)}
metric_df = pd.DataFrame(metric_dict)
metric_df.reset_index(inplace = True)
#---------------------------Presentation----------------------------------
#-------------------------------------view data --------------------------
st.header("Lets look at what we are dealing with ")
st.dataframe(data_head.head())
#-----------------------------corelation_plot----------------------------------
st.header("Corelation Plot")
corr_val = corr_mat
corr = ff.create_annotated_heatmap(y = corr_val.index.tolist(),
x = corr_val.columns.tolist(),
z = corr_val.values)
for i in range(len(corr.layout.annotations)):
corr.layout.annotations[i].font.size = 8
corr.layout.annotations[i].text = str(round(float(corr.layout.annotations[i].text),4))
corr.update_layout(width = 800,height = 800)
st.plotly_chart(corr)
#-------------------------------metric table----------------------------
st.header("METRICS FOR REGRESSION ALGORITHMS")
table = ff.create_table(metric_df)
table.update_layout(width = 1350)
st.plotly_chart(table)
st.markdown("MAPE does not represent the output as a percentage in range [0, 100]. Instead, it represents in range [0, 1/eps].")
#------------------------------RADAR_plots------------------------------
radar = go.Figure()
metric_df = metric_df.drop([0],axis = 0)
for metric_lis in metric_df.columns[1:].values:
radar.add_trace(go.Scatterpolar(r=metric_df[metric_lis].tolist(),
theta=metric_df["index"].tolist(),
fill='toself',
name= metric_lis))
radar.update_layout(polar=dict(radialaxis=dict(visible=True,range=[0, 2])),
showlegend=True,
title = "Radar Plot! (use legend to disable individual algorithms)",
width = 800,height = 650)
st.plotly_chart(radar)
#-------------------------------------------------
def compute_class(data,target):
st.title("Classification Report")
#--------------------------------------preprocessing-------------------------------
drop_str = [col for col in data.columns if type(data[col][0]) == str]
data_head = data.copy(deep = True) #is used in presentation
data = data.drop(drop_str,axis = 1)
data = data.drop(target.name, axis = 1) #dropping y from data
pca = False # FIX THIS!
if len(data.columns) > 2:
pca = True
#------------------------------scaling------------------------
sc_1 = StandardScaler()
x_scaled = sc_1.fit_transform(data)
#----------------------------splits---------------------
x_train,x_test,y_train,y_test = train_test_split(x_scaled,target ,test_size = 0.2,
random_state = 177013)
#-----------------------PCA only if >2 cols---------------
if pca == True:
pca = PCA(n_components = 2)
x_train = pd.DataFrame(data = pca.fit_transform(x_train),columns = ['pc1',"pc2"]).iloc[:,:].values
x_test = pca.transform(x_test)
#----------------------------algorithms-----------------------------NB is disqualified
# (has some reservations about neg values)
classification_models = {"LR":LogisticRegression(),"SVC":SVC(kernel = "rbf"),
"DTC":DecisionTreeClassifier(),
"RFC":RandomForestClassifier(n_estimators = 500),
"XGBC":XGBClassifier(n_estimators = 500)}
metric_dict = {}
accu_dict = {}
for name,algorithm in tqdm(classification_models.items()):
model = algorithm
model.fit(x_train,y_train)
y_pred = model.predict(x_test)
metric_dict[name] = {"precision":round(precision_score(y_test,y_pred,pos_label=y_pred[0],average = "micro"),2),
"recall":round(recall_score(y_test,y_pred,pos_label=y_pred[0],average = "micro"),2),
"f1_score":round(f1_score(y_test,y_pred,average = 'micro'),2),
"accuracy":accuracy_score(y_test,y_pred),
"confusion":confusion_matrix(y_test,y_pred),
"ROC_Vals" :roc_curve(y_test,y_pred,pos_label=y_pred[0])}
accu_dict[name] = accuracy_score(y_test,y_pred)
#-------------------------helper FUNCTIONS---------------------
def list_maker(metric_dict,keyword = "accuracy"):
key_list = list(metric_dict.keys())
return [metric_dict[key][keyword] for key in key_list]
def random_color(metric_dict):
return ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(len(metric_dict))]
metric_df = pd.DataFrame(metric_dict).drop(["confusion","ROC_Vals"],axis = 0)
metric_df.reset_index(inplace = True)
#--------------------------------------------- presentation and graphs -----------------------------------0
#-------------------------------------view data --------------------------
st.header("Lets look at what we are dealing with ")
st.dataframe(data_head.head())
#-----------------------------corelation_plot----------------------------------
st.header("Corelation Plot")
st.markdown("zoom if intelligible")
corr_val = data.corr()
corr = ff.create_annotated_heatmap(y = corr_val.index.tolist(),
x = corr_val.columns.tolist(),z = corr_val.values)
for i in range(len(corr.layout.annotations)):
corr.layout.annotations[i].font.size = 8
corr.layout.annotations[i].text = str(round(float(corr.layout.annotations[i].text),4))
corr.update_layout(width = 800,height = 800)
st.plotly_chart(corr)
st.header("METRICS FOR CLASSIFICATION ALGORITHMS")
#------------------------metric_table-----------------
table = ff.create_table(metric_df)
table.update_layout(width = 1350)
st.plotly_chart(table)
#--------------heatmaps------------------------------
st.markdown("### CONFUSION MATRICES")
fig = make_subplots(rows = 1,cols =len(metric_df.columns[1:].values),
shared_yaxes=True,horizontal_spacing=0.05,
subplot_titles= metric_df.columns[1:].values)
annot_var = []
axis_count = 0
row_col = []
for row in range(1,2):
for col in range(1,6):
row_col.append([row,col])
row_col_pos = 0
for al in metric_df.columns[1:].values:
heatmap2 = ff.create_annotated_heatmap(z = metric_dict[al]["confusion"],x = ["1_pred","0_pred"],
y = ["1_true","0_true"],
annotation_text= metric_dict[al]["confusion"])
fig.add_trace(heatmap2.data[0],row_col[row_col_pos][0],row_col[row_col_pos][1])
annot_temp = list(heatmap2.layout.annotations)
axis_count = axis_count + 1
row_col_pos = row_col_pos+1
for k in range(len(annot_temp)):
annot_temp[k]['xref'] = "x"+str(axis_count)
annot_temp[k]['yref'] = 'y'+str(axis_count)
annot_var= annot_var + annot_temp
lo = list(fig['layout']["annotations"]) + annot_var
fig.update_layout(annotations = lo,autosize = True,width = 1350)
st.plotly_chart(fig)
#------------scatter plots----------------
fpr, tpr,thres = roc_curve(y_test,y_pred,pos_label=y_pred[0])
scatter_plot = go.Figure(go.Scatter(x = [0,1], y = [0,1], mode = "lines", name = "ref"))
for al in metric_df.columns[1:].values:
AUC_val = auc(metric_dict[al]["ROC_Vals"][0].tolist(),metric_dict[al]["ROC_Vals"][1].tolist())
scat = go.Scatter(x = metric_dict[al]["ROC_Vals"][0].tolist(),
y = metric_dict[al]["ROC_Vals"][1].tolist(),
name = f"{al} - AUC val - {AUC_val:.2f}")
scatter_plot.add_trace(scat)
scatter_plot.update_layout(width = 1300,height = 500)
st.header("ROC_curves")
st.plotly_chart(scatter_plot)
#-------------funnel-chart-----------------
st.header("Recommendations")
st.markdown("the percent below classifier represents recommended probability for classifier")
accu_dict = dict(sorted(accu_dict.items(), key=lambda item: item[1],reverse=True))
funnel = go.Figure(go.Funnelarea(values = list(accu_dict.values()),text = list(accu_dict.keys())))
funnel.update_layout(showlegend = False)
st.plotly_chart(funnel)
#--------------------driver-code-----------------
st.title("PROJECT LUMIN")
st.markdown("there are still number of corner cases yet to debug.working on it.....")
st.markdown("this is a automated report generated by Project Lumin")
prob_type = st.selectbox("choose problem type: ",["regression","classification"])
data_path = st.file_uploader("drop the data set here: ", type = ["csv"])
if data_path:
data = pd.read_csv(data_path)
tar_var = st.selectbox("choose Y var(prediction)",list(data.columns))
target = data[tar_var]
if st.button(f"{prob_type} it is"):
if prob_type == "regression":
compute_reg(data,target)
else:
compute_class(data,target)