-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathrgb_ted.py
301 lines (218 loc) · 8.71 KB
/
rgb_ted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
'''
This is a PyTorch implementation of CURL: Neural Curve Layers for Global Image Enhancement
https://arxiv.org/pdf/1911.13175.pdf
Please cite paper if you use this code.
Tested with Pytorch 1.7.1, Python 3.7.9
Authors: Sean Moran ([email protected]), 2020
'''
import torch
import torch.nn as nn
class Flatten(nn.Module):
def forward(self, x):
"""Flatten a Tensor to a Vector
:param x: Tensor
:returns: 1D Tensor
:rtype: Tensor
"""
return x.view(x.size()[0], -1)
class TED(nn.Module):
def __init__(self):
"""Initialisation function for the Transformed Encoder Decoder (TED)
:returns: N/A
:rtype: N/A
"""
super().__init__()
def layer(nIn, nOut, k, s, p, d=1):
return nn.Sequential(nn.Conv2d(nIn, nOut, k, s, p, d), nn.LeakyReLU(inplace=True))
self.conv1 = nn.Conv2d(16, 64, 1)
self.conv2 = nn.Conv2d(32, 64, 1)
self.conv3 = nn.Conv2d(64, 64, 1)
self.mid_net2_1 = MidNet2(in_channels=16)
self.mid_net4_1 = MidNet4(in_channels=16)
self.local_net = LocalNet(16)
self.dconv_down1 = LocalNet(3, 16)
self.dconv_down2 = LocalNet(16, 32)
self.dconv_down3 = LocalNet(32, 64)
self.dconv_down4 = LocalNet(64, 128)
self.dconv_down5 = LocalNet(128, 128)
self.maxpool = nn.MaxPool2d(2, padding=0)
self.upsample = nn.UpsamplingNearest2d(scale_factor=2)
self.up_conv1x1_1 = nn.Conv2d(128, 128, 1)
self.up_conv1x1_2 = nn.Conv2d(64, 64, 1)
self.up_conv1x1_3 = nn.Conv2d(32, 32, 1)
self.up_conv1x1_4 = nn.Conv2d(16, 16, 1)
self.dconv_up4 = LocalNet(128, 64)
self.dconv_up3 = LocalNet(64, 32)
self.dconv_up2 = LocalNet(32, 16)
self.dconv_up1 = LocalNet(32, 3)
self.conv_fuse1 = nn.Conv2d(208, 16, 1)
self.glob_net1 = nn.Sequential(
layer(16, 64, 3, 2, 1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
layer(64, 64, 3, 2, 1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
layer(64, 64, 3, 2, 1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
layer(64, 64, 3, 2, 1),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
layer(64, 64, 3, 2, 1),
nn.AdaptiveAvgPool2d(1),
Flatten(),
nn.Dropout(0.5),
nn.Linear(64, 64),
)
def forward(self, x):
"""Forward function for the TED network
:param x: input image
:returns: convolutional features
:rtype: Tensor
"""
x_in_tile = x.clone()
conv1 = self.dconv_down1(x)
x = self.maxpool(conv1)
conv2 = self.dconv_down2(x)
x = self.maxpool(conv2)
conv3 = self.dconv_down3(x)
x = self.maxpool(conv3)
conv4 = self.dconv_down4(x)
x = self.maxpool(conv4)
x = self.dconv_down5(x)
x = self.up_conv1x1_1(self.upsample(x))
if x.shape[3] != conv4.shape[3] and x.shape[2] != conv4.shape[2]:
x = torch.nn.functional.pad(x, (1, 0, 0, 1))
elif x.shape[2] != conv4.shape[2]:
x = torch.nn.functional.pad(x, (0, 0, 0, 1))
elif x.shape[3] != conv4.shape[3]:
x = torch.nn.functional.pad(x, (1, 0, 0, 0))
del conv4
x = self.dconv_up4(x)
x = self.up_conv1x1_2(self.upsample(x))
if x.shape[3] != conv3.shape[3] and x.shape[2] != conv3.shape[2]:
x = torch.nn.functional.pad(x, (1, 0, 0, 1))
elif x.shape[2] != conv3.shape[2]:
x = torch.nn.functional.pad(x, (0, 0, 0, 1))
elif x.shape[3] != conv3.shape[3]:
x = torch.nn.functional.pad(x, (1, 0, 0, 0))
x = self.dconv_up3(x)
x = self.up_conv1x1_3(self.upsample(x))
del conv3
if x.shape[3] != conv2.shape[3] and x.shape[2] != conv2.shape[2]:
x = torch.nn.functional.pad(x, (1, 0, 0, 1))
elif x.shape[2] != conv2.shape[2]:
x = torch.nn.functional.pad(x, (0, 0, 0, 1))
elif x.shape[3] != conv2.shape[3]:
x = torch.nn.functional.pad(x, (1, 0, 0, 0))
x = self.dconv_up2(x)
x = self.up_conv1x1_4(self.upsample(x))
del conv2
mid_features1 = self.mid_net2_1(conv1)
mid_features2 = self.mid_net4_1(conv1)
glob_features = self.glob_net1(conv1)
glob_features = glob_features.unsqueeze(2)
glob_features = glob_features.unsqueeze(3)
glob_features = glob_features.repeat(
1, 1, mid_features1.shape[2], mid_features1.shape[3])
fuse = torch.cat(
(conv1, mid_features1, mid_features2, glob_features), 1)
conv1_fuse = self.conv_fuse1(fuse)
if x.shape[3] != conv1.shape[3] and x.shape[2] != conv1.shape[2]:
x = torch.nn.functional.pad(x, (1, 0, 0, 1))
elif x.shape[2] != conv1.shape[2]:
x = torch.nn.functional.pad(x, (0, 0, 0, 1))
elif x.shape[3] != conv1.shape[3]:
x = torch.nn.functional.pad(x, (1, 0, 0, 0))
x = torch.cat([x, conv1_fuse], dim=1)
del conv1
x = self.dconv_up1(x)
out = x+x_in_tile
return out
class LocalNet(nn.Module):
def forward(self, x_in):
"""Defines a double convolution
:param x_in: input convolutional features
:returns: convolutional features
:rtype: Tensor
"""
x = self.lrelu(self.conv1(self.refpad(x_in)))
x = self.lrelu(self.conv2(self.refpad(x)))
return x
def __init__(self, in_channels=16, out_channels=64):
"""Initialisation function
:param in_channels: number of input channels
:param out_channels: number of output channels
:returns: N/A
:rtype: N/A
"""
super(LocalNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 0, 1)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 0, 1)
self.lrelu = nn.LeakyReLU()
self.refpad = nn.ReflectionPad2d(1)
class MidNet2(nn.Module):
def forward(self, x_in):
"""Network with dilation rate 2
:param x_in: input convolutional features
:returns: processed convolutional features
:rtype: Tensor
"""
x = self.lrelu(self.conv1((x_in)))
x = self.lrelu(self.conv2((x)))
x = self.lrelu(self.conv3(x))
x = self.conv4(x)
return x
def __init__(self, in_channels=16):
"""FIXME! briefly describe function
:param in_channels: Input channels
:returns: N/A
:rtype: N/A
"""
super(MidNet2, self).__init__()
self.lrelu = nn.LeakyReLU()
self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 2, 2)
self.conv2 = nn.Conv2d(64, 64, 3, 1, 2, 2)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 2, 2)
self.conv4 = nn.Conv2d(64, 64, 3, 1, 2, 2)
class MidNet4(nn.Module):
def forward(self, x_in):
"""Network with dilation rate 4
:param x_in: input convolutional features
:returns: processed convolutional features
:rtype: Tensor
"""
x = self.lrelu(self.conv1((x_in)))
x = self.lrelu(self.conv2((x)))
x = self.lrelu(self.conv3(x))
x = self.conv4(x)
return x
def __init__(self, in_channels=16):
"""FIXME! briefly describe function
:param in_channels: Input channels
:returns: N/A
:rtype: N/A
"""
super(MidNet4, self).__init__()
self.lrelu = nn.LeakyReLU()
self.conv1 = nn.Conv2d(in_channels, 64, 3, 1, 4, 4)
self.conv2 = nn.Conv2d(64, 64, 3, 1, 4, 4)
self.conv3 = nn.Conv2d(64, 64, 3, 1, 4, 4)
self.conv4 = nn.Conv2d(64, 64, 3, 1, 4, 4)
# Model definition
class TEDModel(nn.Module):
def __init__(self):
"""Initialisation function from the TED model
:returns: N/A
:rtype: N/A
"""
super(TEDModel, self).__init__()
self.ted = TED()
self.final_conv = nn.Conv2d(3, 64, 3, 1, 0, 1)
self.refpad = nn.ReflectionPad2d(1)
def forward(self, img):
"""Forward function for TED
:param image: image tensor to process
:returns: convolutional features
:rtype: Tensor
"""
output_img= self.ted(img.float())
return self.final_conv(self.refpad(output_img))