forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDownload_Transformer_models.py
180 lines (168 loc) · 6 KB
/
Download_Transformer_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import sys
import torch
import transformers
import yaml
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoTokenizer,
set_seed,
)
print("Transformers version", transformers.__version__)
set_seed(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def transformers_model_dowloader(
mode,
pretrained_model_name,
num_labels,
do_lower_case,
max_length,
torchscript,
hardware,
batch_size,
):
"""This function, save the checkpoint, config file along with tokenizer config and vocab files
of a transformer model of your choice.
"""
print("Download model and tokenizer", pretrained_model_name)
# loading pre-trained model and tokenizer
if mode == "sequence_classification":
config = AutoConfig.from_pretrained(
pretrained_model_name, num_labels=num_labels, torchscript=torchscript
)
model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name, config=config
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name, do_lower_case=do_lower_case
)
elif mode == "question_answering":
config = AutoConfig.from_pretrained(
pretrained_model_name, torchscript=torchscript
)
model = AutoModelForQuestionAnswering.from_pretrained(
pretrained_model_name, config=config
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name, do_lower_case=do_lower_case
)
elif mode == "token_classification":
config = AutoConfig.from_pretrained(
pretrained_model_name, num_labels=num_labels, torchscript=torchscript
)
model = AutoModelForTokenClassification.from_pretrained(
pretrained_model_name, config=config
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name, do_lower_case=do_lower_case
)
elif mode == "text_generation":
config = AutoConfig.from_pretrained(
pretrained_model_name, num_labels=num_labels, torchscript=torchscript
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name, config=config
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name, do_lower_case=do_lower_case
)
# NOTE : for demonstration purposes, we do not go through the fine-tune processing here.
# A Fine_tunining process based on your needs can be added.
# An example of Fine_tuned model has been provided in the README.
NEW_DIR = "./Transformer_model"
try:
os.mkdir(NEW_DIR)
except OSError:
print("Creation of directory %s failed" % NEW_DIR)
else:
print("Successfully created directory %s " % NEW_DIR)
print(
"Save model and tokenizer/ Torchscript model based on the setting from setup_config",
pretrained_model_name,
"in directory",
NEW_DIR,
)
if save_mode == "pretrained":
model.save_pretrained(NEW_DIR)
tokenizer.save_pretrained(NEW_DIR)
elif save_mode == "torchscript":
dummy_input = "This is a dummy input for torch jit trace"
inputs = tokenizer.encode_plus(
dummy_input,
max_length=int(max_length),
pad_to_max_length=True,
add_special_tokens=True,
return_tensors="pt",
)
model.to(device).eval()
if hardware == "neuron":
import torch_neuron
input_ids = torch.cat([inputs["input_ids"]] * batch_size, 0).to(device)
attention_mask = torch.cat([inputs["attention_mask"]] * batch_size, 0).to(
device
)
traced_model = torch_neuron.trace(model, (input_ids, attention_mask))
torch.jit.save(
traced_model,
os.path.join(
NEW_DIR,
"traced_{}_model_neuron_batch_{}.pt".format(model_name, batch_size),
),
)
elif hardware == "neuronx":
import torch_neuronx
input_ids = torch.cat([inputs["input_ids"]] * batch_size, 0).to(device)
attention_mask = torch.cat([inputs["attention_mask"]] * batch_size, 0).to(
device
)
traced_model = torch_neuronx.trace(model, (input_ids, attention_mask))
torch.jit.save(
traced_model,
os.path.join(
NEW_DIR,
"traced_{}_model_neuronx_batch_{}.pt".format(
model_name, batch_size
),
),
)
else:
input_ids = inputs["input_ids"].to(device)
attention_mask = inputs["attention_mask"].to(device)
traced_model = torch.jit.trace(model, (input_ids, attention_mask))
torch.jit.save(traced_model, os.path.join(NEW_DIR, "traced_model.pt"))
return
if __name__ == "__main__":
dirname = os.path.dirname(__file__)
if len(sys.argv) > 1:
filename = os.path.join(dirname, sys.argv[1])
else:
filename = os.path.join(dirname, "model-config.yaml")
f = open(filename)
model_yaml_config = yaml.safe_load(f)
settings = model_yaml_config["handler"]
mode = settings["mode"]
model_name = settings["model_name"]
num_labels = int(settings["num_labels"])
do_lower_case = settings["do_lower_case"]
max_length = settings["max_length"]
save_mode = settings["save_mode"]
if save_mode == "torchscript":
torchscript = True
else:
torchscript = False
hardware = settings.get("hardware")
batch_size = int(settings.get("batch_size", "1"))
transformers_model_dowloader(
mode,
model_name,
num_labels,
do_lower_case,
max_length,
torchscript,
hardware,
batch_size,
)