forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan_fashiongen_handler.py
86 lines (72 loc) · 3.17 KB
/
dcgan_fashiongen_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import zipfile
import torch
from io import BytesIO
from torchvision.utils import save_image
from ts.torch_handler.base_handler import BaseHandler
MODELSZIP = "models.zip"
CHECKPOINT = "DCGAN_fashionGen.pth"
class ModelHandler(BaseHandler):
def __init__(self):
self.initialized = False
self.map_location = None
self.device = None
self.use_gpu = True
self.store_avg = True
self.dcgan_model = None
self.default_number_of_images = 1
def initialize(self, context):
"""
Extract the models zip; Take the serialized file and load the model
"""
properties = context.system_properties
model_dir = properties.get("model_dir")
gpu_id = properties.get("gpu_id")
self.map_location, self.device, self.use_gpu = \
("cuda", torch.device("cuda:"+str(gpu_id)), True) if torch.cuda.is_available() else \
("cpu", torch.device("cpu"), False)
# If not already extracted, Extract model source code
if not os.path.exists(os.path.join(model_dir, "models")):
with zipfile.ZipFile(os.path.join(model_dir, MODELSZIP), "r") as zip_ref:
zip_ref.extractall(model_dir)
# Load Model
from models.DCGAN import DCGAN
self.dcgan_model = DCGAN(useGPU=self.use_gpu, storeAVG=self.store_avg)
state_dict = torch.load(os.path.join(model_dir, CHECKPOINT), map_location=self.map_location)
self.dcgan_model.load_state_dict(state_dict)
self.initialized = True
def preprocess(self, requests):
"""
Build noise data by using "number of images" and other "constraints" provided by the end user.
"""
preprocessed_data = []
for req in requests:
data = req.get("data") if req.get("data") is not None else req.get("body", {})
number_of_images = data.get("number_of_images", self.default_number_of_images)
labels = {ky: "b'{}'".format(vl) for ky, vl in data.items() if ky not in ["number_of_images"]}
noise = self.dcgan_model.buildNoiseDataWithConstraints(number_of_images, labels)
preprocessed_data.append({
"number_of_images": number_of_images,
"input": noise
})
return preprocessed_data
def inference(self, preprocessed_data, *args, **kwargs):
"""
Take the noise data as an input tensor, pass it to the model and collect the output tensor.
"""
input_batch = torch.cat(tuple(map(lambda d: d["input"], preprocessed_data)), 0)
with torch.no_grad():
image_tensor = self.dcgan_model.test(input_batch, getAvG=True, toCPU=True)
output_batch = torch.split(image_tensor, tuple(map(lambda d: d["number_of_images"], preprocessed_data)))
return output_batch
def postprocess(self, output_batch):
"""
Create an image(jpeg) using the output tensor.
"""
postprocessed_data = []
for op in output_batch:
fp = BytesIO()
save_image(op, fp, format="JPEG")
postprocessed_data.append(fp.getvalue())
fp.close()
return postprocessed_data