-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlayers.py
121 lines (90 loc) · 3.62 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import copy
class Layer:
def __init__():
pass
def forward(self, X):
pass
def backward(self, grad_top):
pass
class Dense(Layer):
def __init__(self, input_size, out_size):
self.input_size = input_size
self.out_size = out_size
self.layer_input = None
# self.W = np.random.randn(input_size, out_size) * 0.01
# Glorot uniform initalization
limit = np.sqrt(6) / np.sqrt(input_size + out_size)
self.W = np.random.uniform(-limit, limit, size=(input_size, out_size))
self.b = np.zeros((1, out_size))
def initialize(self, optimizer):
self.W_optimizer = copy.copy(optimizer)
self.b_optimizer = copy.copy(optimizer)
def forward(self, X):
self.layer_input = X
return np.dot(X, self.W) + self.b
def backward(self, out_grad):
dW = self.layer_input.T.dot(out_grad)
db = np.sum(out_grad, axis=0, keepdims=True)
out_grad = out_grad.dot(self.W.T)
self.W = self.W_optimizer.step(self.W, dW)
self.b = self.b_optimizer.step(self.b, db)
return out_grad
class Dropout(Layer):
def __init__(self, p=0.1):
self.p = p
self.mask = None
def forward(self, X, is_training=True):
if is_training:
self.mask = (np.random.uniform(size=X.shape) > self.p) / self.p
return X * self.mask
return X
def backward(self, grad_top):
return self.mask * grad_top
class BatchNormalization(Layer):
def __init__(self, momentum=0.9, eps=1e-5):
self.momentum = momentum
self.eps = eps
self.running_mean = None
self.running_var = None
self.gamma = None
self.beta = None
self.X_norm = None
self.denum = None
def initialize(self, optimizer):
self.g_optimizer = copy.copy(optimizer)
self.b_optimizer = copy.copy(optimizer)
def forward(self, X, is_training=True):
if is_training:
mb_mean = np.mean(X, axis=0)
mb_var = np.var(X, axis=0)
# First time running through batch norm layer.
if self.running_mean is None:
self.running_mean = np.zeros(X.shape[1], dtype=X.dtype)
self.running_var = np.zeros(X.shape[1], dtype=X.dtype)
self.gamma = np.ones(X.shape[1])
self.beta = np.zeros(X.shape[1])
denum = (1 / np.sqrt(mb_var + self.eps))
X_norm = (X - mb_mean) / np.sqrt(mb_var + self.eps)
# Parameters that will be used by backpropagation.
self.X_norm = X_norm
self.denum = denum
# Exponential decay.
self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mb_mean
self.running_var = self.momentum * self.running_var + (1 - self.momentum) * mb_var
return self.gamma * X_norm + self.beta
# Test time
else:
centered_X = X - self.running_mean
normalized_X = centered_X / np.sqrt(self.running_var + self.eps)
return self.gamma * normalized_X + self.beta
def backward(self, out_grad):
dbeta = np.sum(out_grad, axis=0)
dgamma = np.sum(out_grad * self.X_norm, axis=0)
N = out_grad.shape[0]
dx_norm = out_grad * self.gamma
dx = (1 / N) * self.denum * (N * dx_norm - np.sum(dx_norm, axis=0) -
self.X_norm * np.sum(dx_norm * self.X_norm, axis=0))
self.gamma = self.g_optimizer.step(self.gamma, dgamma)
self.beta = self.b_optimizer.step(self.beta, dbeta)
return dx