-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy patheval.py
208 lines (167 loc) · 6.77 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import time
import numpy as np
import skimage
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from pycocotools import mask as maskUtils
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from torch.autograd import Variable
from config import Config
from network.mask_rcnn import MaskRCNN
from tasks.merge_task import final_detections, unmold_detections
from preprocess.data_center import CocoDataset
from preprocess.InputProcess import (compose_image_meta, mold_image,
mold_inputs, parse_image_meta,
resize_image)
def to_variable(numpy_data, volatile=False, is_cuda=True):
numpy_data = numpy_data.astype(np.float32)
torch_data = torch.from_numpy(numpy_data).float()
variable = Variable(torch_data, volatile=volatile)
if is_cuda:
variable = variable.cuda()
return variable
class InferenceConfig(Config):
"""Configuration for training on MS COCO.
Derives from the base Config class and overrides values specific
to the COCO dataset.
"""
# Give the configuration a recognizable name
NAME = "coco"
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 80 # COCO has 80 classes
############################################################
# COCO Evaluation
############################################################
def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks):
"""Arrange resutls to match COCO specs in http://cocodataset.org/#format
"""
# If no results, return an empty list
if rois is None:
return []
results = []
for image_id in image_ids:
# Loop through detections
for i in range(rois.shape[0]):
class_id = class_ids[i]
score = scores[i]
bbox = np.around(rois[i], 1)
mask = masks[:, :, i]
result = {
"image_id": image_id,
"category_id": dataset.get_source_class_id(class_id, "coco"),
"bbox": [bbox[1], bbox[0], bbox[3] - bbox[1], bbox[2] - bbox[0]],
"score": score,
"segmentation": maskUtils.encode(np.asfortranarray(mask))
}
results.append(result)
return results
def evaluate_coco(model, dataset, coco, config, eval_type="bbox", limit=None, image_ids=None):
"""Runs official COCO evaluation.
dataset: A Dataset object with valiadtion data
eval_type: "bbox" or "segm" for bounding box or segmentation evaluation
"""
# Pick COCO images from the dataset
image_ids = image_ids or dataset.image_ids
# Limit to a subset
if limit:
image_ids = image_ids[:limit]
# Get corresponding COCO image IDs.
coco_image_ids = [dataset.image_info[id]["id"] for id in image_ids]
t_prediction = 0
t_start = time.time()
results = []
for i, image_id in enumerate(image_ids):
if i%10==0:
print('Processed %d images'%i )
# Load image
image = dataset.load_image(image_id)
# Run detection
t = time.time()
r = inference(image, model, config)
t_prediction += (time.time() - t)
# Convert results to COCO format
image_results = build_coco_results(dataset, coco_image_ids[i:i + 1],
r["rois"], r["class_ids"],
r["scores"], r["masks"])
results.extend(image_results)
# Load results. This modifies results with additional attributes.
coco_results = coco.loadRes(results)
# Evaluate
cocoEval = COCOeval(coco, coco_results, eval_type)
cocoEval.params.imgIds = coco_image_ids
# Only evaluate for person.
cocoEval.params.catIds = coco.getCatIds(catNms=['person'])
cocoEval.evaluate()
a=cocoEval.accumulate()
b=cocoEval.summarize()
print("Prediction time: {}. Average {}/image".format(
t_prediction, t_prediction / len(image_ids)))
print("Total time: ", time.time() - t_start)
def inference(image, model, config):
molded_image, image_metas, windows = mold_inputs([image], config)
inputs = np.transpose(molded_image, (0, 3, 1, 2))
inputs = to_variable(inputs, volatile=True, is_cuda=True)
outputs = model(inputs)
rpn_class_logits, rpn_class, rpn_bbox,\
rpn_rois, mrcnn_class_logits, mrcnn_class,\
mrcnn_bbox, mrcnn_masks_logits = outputs
mrcnn_class = mrcnn_class.cpu().data.numpy()
mrcnn_bbox = mrcnn_bbox.cpu().data.numpy()
rois = rpn_rois.cpu().data.numpy() / float(config.IMAGE_MAX_DIM)
rois = rois[:, :, [1, 0, 3, 2]]
detections = final_detections(
rois, mrcnn_class, mrcnn_bbox, image_metas, config)
mask_rois = detections[..., :4][..., [1, 0, 3, 2]]
mask_rois = to_variable(mask_rois, volatile=True).cuda()
mrcnn_mask = model.rpn_mask(model.mrcnn_feature_maps, mask_rois)
mrcnn_mask = F.sigmoid(mrcnn_mask)
mrcnn_mask = mrcnn_mask.cpu().data.numpy()
mrcnn_mask = mrcnn_mask.transpose(0, 1, 3, 4, 2)
final_rois, final_class_ids, final_scores, final_masks =\
unmold_detections(detections[0], mrcnn_mask[0],
image.shape, windows[0])
result = {
"rois": final_rois,
"class_ids": final_class_ids,
"scores": final_scores,
"masks": final_masks,
}
return result
if __name__ == "__main__":
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Validation Mask R-CNN on MS COCO.')
parser.add_argument('--dataset', required=False,
metavar="/path/to/coco/",
help='Directory of the MS-COCO dataset')
parser.add_argument('--model', required=False,
metavar="/path/to/weights.h5",
help="Path to weights .h5 file or 'coco'")
args = parser.parse_args()
print("Model: ", args.model)
print("Dataset: ", args.dataset)
config = InferenceConfig()
config.display()
pretrained_weight = "./models/mrcnn.pth"
state_dict = torch.load(pretrained_weight)
model = MaskRCNN(config=config, mode='inference')
model.load_state_dict(state_dict)
model.cuda()
model.eval()
cudnn.benchmark = True
# Validation dataset
dataset_val = CocoDataset()
coco = dataset_val.load_coco("/coco", "minival", return_coco=True)
dataset_val.prepare()
#"bbox" or "segm" for bounding box or segmentation evaluation
evaluate_coco(model, dataset_val, coco, config, "bbox")