forked from jamespark3922/adv-inf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
156 lines (140 loc) · 7.19 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import numpy as np
import time
import os
from six.moves import cPickle
import opts
import models
from dataloader import *
import eval_utils
import argparse
import misc.utils as utils
import torch
import torch.nn as nn
# Input arguments and options
parser = argparse.ArgumentParser()
# Input paths
parser.add_argument('--g_model_path', type=str, default='',
help='path to generator to evaluate')
parser.add_argument('--d_model_path', type=str, default='',
help='path to discrimiator to evaluate')
parser.add_argument('--infos_path', type=str, default='',
help='path to infos to evaluate')
# Basic options
parser.add_argument('--batch_size', type=int, default=0,
help='if > 0 then overrule, otherwise load from checkpoint.')
parser.add_argument('--num_videos', type=int, default=-1,
help='how many images to use when periodically evaluating the loss? (-1 = all)')
parser.add_argument('--language_eval', type=int, default=1,
help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
parser.add_argument('--use_context', type=int, default=1,
help='use context during evaluation for dense model (1=yes,0=no)')
# Sampling options
parser.add_argument('--sample_max', type=int, default=1,
help='1 = sample argmax words. 0 = sample from distributions.')
parser.add_argument('--num_samples', type=int, default=100,
help='number to sample for each image/video. Used when sample_max is 0')
parser.add_argument('--num_captions', type=int, default=1,
help='number of captions to consider for each image/video.')
parser.add_argument('--max_ppl', type=int, default=0,
help='beam search by max perplexity or max probability.')
parser.add_argument('--beam_size', type=int, default=1,
help='used when sample_max = 1, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
parser.add_argument('--group_size', type=int, default=1,
help='used for diverse beam search. if group_size is 1, then it\'s normal beam search')
parser.add_argument('--diversity_lambda', type=float, default=0.5,
help='used for diverse beam search. Usually from 0.2 to 0.8. Higher value of lambda produces a more diverse list')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature when sampling from distributions (i.e. when sample_max = 0). Lower = "safer" predictions.')
parser.add_argument('--decoding_constraint', type=int, default=0,
help='If 1, not allowing same word in a row')
# Input options
parser.add_argument('--input_fc_dir', type=str, default='',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_img_dir', type=str, default='',
help='path to the image file')
parser.add_argument('--input_box_dir', type=str, default='',
help='path to the bottomup file')
parser.add_argument('--input_label_h5', type=str, default='',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--glove_npy', type=str, default='',
help='path to glove numpy')
parser.add_argument('--input_json', type=str, default='',
help='path to the json file containing additional info and vocab. empty = fetch from model checkpoint.')
parser.add_argument('--split', type=str, default='test',
help='if running on MSCOCO images, which split to use: val|test|train')
parser.add_argument('--coco_json', type=str, default='',
help='if nonempty then use this file in DataLoaderRaw (see docs there). Used only in MSCOCO test evaluation, where we have a specific json file of only test set images.')
# misc
parser.add_argument('--id', type=str, default='',
help='an id identifying this run/job. used only if language_eval = 1 for appending to intermediate files')
parser.add_argument('--verbose', type=int, default=1,
help='verbse print.')
parser.add_argument('--verbose_beam', type=int, default=0,
help='if we need to print out all beam search beams.')
parser.add_argument('--verbose_loss', type=int, default=0,
help='if we need to calculate loss.')
parser.add_argument('--verbose_video', type=int, default=1,
help='if we need to get all the language metrics for video evaluation.')
# weights for hybrid discriminator
parser.add_argument('--vis_weight', type=float, default=0.8,
help='weight for visual discriminator in adversarial inference')
parser.add_argument('--lang_weight', type=float, default=0.2,
help='weight for lang discriminator in adversarial inference')
parser.add_argument('--pair_weight', type=float, default=1.0,
help='weight for pair discriminator in adversarial inference')
opt = parser.parse_args()
# Load infos
with open(opt.infos_path) as f:
infos = cPickle.load(f)
# override and collect parameters
if len(opt.input_fc_dir) == 0:
opt.input_fc_dir = infos['opt'].input_fc_dir
opt.input_img_dir = infos['opt'].input_img_dir
opt.input_box_dir = infos['opt'].input_box_dir
if len(opt.input_label_h5) == 0:
opt.input_label_h5 = infos['opt'].input_label_h5
if len(opt.input_json) == 0:
opt.input_json = infos['opt'].input_json
if opt.batch_size == 0:
opt.batch_size = infos['opt'].batch_size
if len(opt.glove_npy) == 0:
opt.glove_npy = infos['opt'].glove_npy
if len(opt.id) == 0:
opt.id = infos['opt'].id
ignore1 =["input_fc_dir", "input_img_dir", "input_box_dir", "input_label_h5", "glove_npy", "input_json"]
ignore2 = ["id", "batch_size", "beam_size", "start_from", "language_eval", "g_start_from", "d_start_from", "temperature",
"vis_weight", "lang_weight", "pair_weight"]
for k in vars(infos['opt']).keys():
if k not in ignore1 and k not in ignore2:
if k in vars(opt):
assert vars(opt)[k] == vars(infos['opt'])[k], k + ' option not consistent'
else:
vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model
opt.vocab = infos['vocab'] # ix -> word mapping
# Setup the model
gen_model,dis_model = models.setup(opt)
gen_model.load_state_dict(torch.load(opt.g_model_path))
gen_model.cuda()
gen_model.eval()
crit = utils.LanguageModelCriterion()
if len(opt.d_model_path) > 0 :
dis_model.load_state_dict(torch.load(opt.d_model_path))
dis_model.cuda()
dis_model.eval()
gan_crit = nn.BCELoss().cuda()
else:
dis_model = None
gan_crit = None
# Create the Data Loader instance
loader = DataLoader(opt)
# When eval using provided pretrained model, the vocab may be different from what you have in your cocotalk.json
# So make sure to use the vocab in infos file.
loader.ix_to_word = infos['vocab']
loss, split_predictions, lang_stats, _, div = eval_utils.eval_split(gen_model, crit, loader, dis_model, gan_crit, eval_kwargs=vars(opt))
print('loss: ', loss)
if lang_stats:
print(lang_stats)