-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfaceRecg.m
124 lines (98 loc) · 4.14 KB
/
faceRecg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
clear;
imgSets = imageSet('/home/soumen/Desktop/PhDCourseWork/miniproject/DS/LFWCropped20/', 'recursive');
feature = [];
for k = 1:length(imgSets)
for l = 1:imgSets(k).Count
Input_image = read(imgSets(k), l);
if size(Input_image, 3) == 3
Input_image = rgb2gray(Input_image);
end
[m, n] = size(Input_image);
F = [];
m1 = floor(m/8) * 8;
n1 = floor(n/8) * 8;
for i = 1 : floor(m/8) : m1
for j = 1 : floor(n/8) : n1
lbp_feature = extractLBPFeatures(Input_image(i:floor(i+m/8-1), j:floor(j+n/8-1)));
F = horzcat(F, lbp_feature);
end
end
F = horzcat(F, k);
feature = [feature; F];
end
end
%csvwrite('faceFeature_lfw.csv',feature);
for x = 10:10:300
fprintf(".......Output.......\n");
reducedData = funPCA(feature, x);
funKNN(reducedData);
funNB(reducedData);
%funSVM(reducedData);
end
%% PCA Implementation .............
function reducedData = funPCA(feature, noFeature)
[~, fc] = size(feature);
feature1 = feature(:,1:(fc-1));
%noFeature = 80;
coeff= pca(feature1);
reducedDimension = coeff(:, 1:noFeature);
reducedData = feature1 * reducedDimension;
reducedData = [reducedData, feature(:,fc)];
fprintf("The feature of the original data is: %d\n", fc-1);
fprintf("The feature of the reduced data is: %d\n", noFeature);
end
%% Classification .............KNN.......
function [] = funKNN(reducedData)
[fr, noFeature] = size(reducedData);
[trainIndex,valIndex,testIndex] = dividerand(fr, .80, 0, .20);
trainData = reducedData(trainIndex, 1:noFeature-1);
testData = reducedData(testIndex, 1:noFeature-1);
valData = reducedData(valIndex, 1:noFeature-1);
trainClass = reducedData(trainIndex, noFeature);
testClass = reducedData(testIndex, noFeature);
valClass = reducedData(valIndex, noFeature);
Mdl = fitcknn(trainData, trainClass,'NumNeighbors',1);
predictClass = predict(Mdl, testData);
results = testClass == predictClass;
true = sum(results == 1);
accuracy = (true / length(testClass)) * 100;
fprintf("The Accuracy of prediction using KNN is %0.4f\n", accuracy);
nb = fitcknn(reducedData(:,1:noFeature-1), reducedData(:,noFeature), 'NumNeighbors',1);
nb = crossval(nb);
fprintf("The loss obtained by cross-validated classification using KNN is %0.4f\n", kfoldLoss(nb));
end
%% Classification ................SVM........
function [] = funSVM(reducedData)
[fr, noFeature] = size(reducedData);
[trainIndex,valIndex,testIndex] = dividerand(fr, .80, 0, .20);
trainData = reducedData(trainIndex, 1:noFeature-1);
testData = reducedData(testIndex, 1:noFeature-1);
valData = reducedData(valIndex, 1:noFeature-1);
trainClass = reducedData(trainIndex, noFeature);
testClass = reducedData(testIndex, noFeature);
valClass = reducedData(valIndex, noFeature);
results = single(multisvm(trainData, trainClass, testData));
true = sum(results == 1);
accuracy = (true / length(testClass)) * 100;
fprintf("The Accuracy of prediction using SVM is %0.4f\n", accuracy);
end
%% Classification .............NaiveBayes......
function [] = funNB(reducedData)
[fr, noFeature] = size(reducedData);
[trainIndex,valIndex,testIndex] = dividerand(fr, .80, 0, .20);
trainData = reducedData(trainIndex, 1:noFeature-1);
testData = reducedData(testIndex, 1:noFeature-1);
valData = reducedData(valIndex, 1:noFeature-1);
trainClass = reducedData(trainIndex, noFeature);
testClass = reducedData(testIndex, noFeature);
valClass = reducedData(valIndex, noFeature);
Mdl = fitcnb(trainData, trainClass, 'DistributionNames', 'normal');
predictClass = predict(Mdl, testData);
results = testClass == predictClass;
true = sum(results == 1);
accuracy = (true / length(testClass)) * 100;
fprintf("The Accuracy of prediction using NB is %0.4f\n", accuracy);
nb = fitcnb(reducedData(:,1:noFeature-1), reducedData(:,noFeature));
nb = crossval(nb);
fprintf("The loss obtained by cross-validated classification using NB is %0.4f\n", kfoldLoss(nb));
end