Skip to content

Latest commit

 

History

History
113 lines (73 loc) · 3.51 KB

File metadata and controls

113 lines (73 loc) · 3.51 KB

Prompt engineering examples for FOSS4GNA 2023

Running an Large Language Model locally let's you play with the latest models! Learn by doing.

Hardware Prerequisites

  • OS – recent version of macOS, or Linux
  • Storage – minimum 50 Gb free
  • Memory – minimum 8 Gb, 16 Gb or more ideal

Minimum Software Installation for macOS and Linux

We will use Ollama, an application for running Large Language Models locally. Download and install Ollama: https://ollama.ai/download

  1. Open a terminal and start ollama.
ollama serve
  1. Check to see if it is installed:
ollama –version

Pull a LLM:

ollama pull orca-mini

Start ollama:

ollama run orca-mini

Minimum Software Installation for Windows

Ollama is currently not available for Windows. However, a Docker image is available, and requires installing Docker.

  1. Install Docker. https://docs.docker.com/desktop/install/windows-install/
  2. Open a Powershell window as Administrator
  3. Pull the ollama container image from Docker Hub. Copy and paste this command in the Powershell window.
docker pull ollama/ollama
  1. Start the ollama container. Copy and paste this command in the Powershell window.
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
  1. To run a model locally, copy and paste this command in the Powershell window.
docker exec -it ollama ollama run orca-mini

Optional Configuration

If you are familiar with Python, using a Jupyter notebook provides an option to save your work and extending the capability of a LLM. We will use Anaconda Distribution,

  1. Download anaconda: https://www.anaconda.com/download
  2. Install anaconda: https://docs.anaconda.com/free/anaconda/install/index.html
  3. We will use Anaconda Navigator: https://docs.anaconda.com/free/anaconda/getting-started/#navigator-tutorials
  4. Open Anaconda Navigator https://docs.anaconda.com/free/navigator/getting-started/#starting-navigator
  5. In Navigator, launch JupyterLab. It will open a page in a browser.
  6. In the Jupyter page choose New > Python3 (ipykernel)
  7. In the first cell, paste the following to install langchain, then choose Run.
conda install langchain -c conda-forge
  1. Add a new cell and paste the following
from langchain.llms import Ollama
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler                                  
llm = Ollama(model="orca-mini", 
             callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]))

llm("Why is the sky blue?")

Prompt Engineering Resources

Try it out

Open the notebooks.