Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Current implementation may return wrong number of symmetrized tensors for higher rank... #100

Open
hongyi-zhao opened this issue Jul 31, 2023 · 5 comments

Comments

@hongyi-zhao
Copy link

I noticed the following note in the source code:

Note
----
Current implementation may return wrong number of symmetrized tensors for higher rank...
"""

Can you give an example to illustrate this situation? How large a rank will trigger this problem, and is there a way to deal with it, such as performing some sort of decomposition to lower the rank?

Regards,
Zhao

@lan496
Copy link
Member

lan496 commented Aug 3, 2023

I observe this issue for the fourth-order symmetric tensor for hexagonal (6/mmm).

spgrep/tests/test_tensor.py

Lines 113 to 122 in a928f36

@pytest.mark.skip()
def test_symmetric_tensor_hexagonal_rank4():
symmetry = get_symmetry_from_database(hall_number=485)
rotations = symmetry["rotations"]
rep = get_representation_on_symmetric_matrix(rotations)
tensors = get_symmetry_adapted_tensors(rep, rotations, rank=4, real=True)
sym_tensors = apply_intrinsic_symmetry(tensors)
assert len(sym_tensors) == 18

This issue seems to happen when input representation matrices have noise. The noise is amplified for higher ranks. Currently, I have no idea to properly handle it.

@hongyi-zhao
Copy link
Author

hongyi-zhao commented Aug 3, 2023

I tested the above example and found that len(sym_tensors) is 19, so the test fails.

But to be honest, I am still not very clear about the physical (mathematical) meaning of the following test steps performed in this test:

    rep = get_representation_on_symmetric_matrix(rotations)
    tensors = get_symmetry_adapted_tensors(rep, rotations, rank=4, real=True)
    sym_tensors = apply_intrinsic_symmetry(tensors)

    assert len(sym_tensors) == 18

As a user of GAP, I try to check the representation of these rotations, aka, the point group, as follows:

gap> rotations:=[[[ 1,  0,  0],
>         [ 0,  1,  0],
>         [ 0,  0,  1]],
> 
>        [[-1,  0,  0],
>         [ 0, -1,  0],
>         [ 0,  0, -1]],
> 
>        [[ 1, -1,  0],
>         [ 1,  0,  0],
>         [ 0,  0,  1]],
> 
>        [[-1,  1,  0],
>         [-1,  0,  0],
>         [ 0,  0, -1]],
> 
>        [[ 0, -1,  0],
>         [ 1, -1,  0],
>         [ 0,  0,  1]],
> 
>        [[ 0,  1,  0],
>         [-1,  1,  0],
>         [ 0,  0, -1]],
> 
>        [[-1,  0,  0],
>         [ 0, -1,  0],
>         [ 0,  0,  1]],
> 
>        [[ 1,  0,  0],
>         [ 0,  1,  0],
>         [ 0,  0, -1]],
> 
>        [[-1,  1,  0],
>         [-1,  0,  0],
>         [ 0,  0,  1]],
> 
>        [[ 1, -1,  0],
>         [ 1,  0,  0],
>         [ 0,  0, -1]],
> 
>        [[ 0,  1,  0],
>         [-1,  1,  0],
>         [ 0,  0,  1]],
> 
>        [[ 0, -1,  0],
>         [ 1, -1,  0],
>         [ 0,  0, -1]],
> 
>        [[ 0, -1,  0],
>         [-1,  0,  0],
>         [ 0,  0, -1]],
> 
>        [[ 0,  1,  0],
>         [ 1,  0,  0],
>         [ 0,  0,  1]],
> 
>        [[-1,  0,  0],
>         [-1,  1,  0],
>         [ 0,  0, -1]],
> 
>        [[ 1,  0,  0],
>         [ 1, -1,  0],
>         [ 0,  0,  1]],
> 
>        [[-1,  1,  0],
>         [ 0,  1,  0],
>         [ 0,  0, -1]],
> 
>        [[ 1, -1,  0],
>         [ 0, -1,  0],
>         [ 0,  0,  1]],
> 
>        [[ 0,  1,  0],
>         [ 1,  0,  0],
>         [ 0,  0, -1]],
> 
>        [[ 0, -1,  0],
>         [-1,  0,  0],
>         [ 0,  0,  1]],
> 
>        [[ 1,  0,  0],
>         [ 1, -1,  0],
>         [ 0,  0, -1]],
> 
>        [[-1,  0,  0],
>         [-1,  1,  0],
>         [ 0,  0,  1]],
> 
>        [[ 1, -1,  0],
>         [ 0, -1,  0],
>         [ 0,  0, -1]],
> 
>        [[-1,  1,  0],
>         [ 0,  1,  0],
>         [ 0,  0,  1]]];;
gap> 
gap> P:=Group(rotations);;
gap> char:=Irr(P);;
gap> rep:=IrreducibleRepresentationsDixon(P, char:unitary);;
gap> List(rep, r -> List(P, g -> g^r));
[ [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], 
      [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
  [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], 
      [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ], 
  [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], 
      [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ] ], 
  [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], 
      [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ] ], 
  [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], 
      [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ] ], 
  [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], 
      [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ] ], 
  [ [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], 
      [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ -1 ] ] ], 
  [ [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], 
      [ [ -1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ], [ [ 1 ] ], [ [ -1 ] ], [ [ 1 ] ] ], 
  [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1, 0 ], [ 0, -1 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ -1, 0 ], [ 0, -1 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ 1, 0 ], [ 0, 1 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ -1, 0 ], [ 0, 1 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ 1, 0 ], [ 0, -1 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ -1, 0 ], [ 0, 1 ] ] ], 
  [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1, 0 ], [ 0, -1 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ 1, 0 ], [ 0, 1 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1, 0 ], [ 0, -1 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1, 0 ], [ 0, 1 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1, 0 ], [ 0, 1 ] ] ], 
  [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ 1, 0 ], [ 0, 1 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ -1, 0 ], [ 0, -1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ -1, 0 ], [ 0, -1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ -1, 0 ], [ 0, 1 ] ], [ [ 1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ -1, 0 ], [ 0, 1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ 1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ 1, 0 ], [ 0, -1 ] ] ], 
  [ [ [ 1, 0 ], [ 0, 1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ 1, 0 ], [ 0, 1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ 1, 0 ], [ 0, 1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], [ [ 1, 0 ], [ 0, 1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, -1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, -1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ 1, 0 ], [ 0, -1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], 
      [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], [ [ 1, 0 ], [ 0, -1 ] ], 
      [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ], [ [ -1/2, -1/2*E(12)^7+1/2*E(12)^11 ], [ -1/2*E(12)^7+1/2*E(12)^11, 1/2 ] ], 
      [ [ 1, 0 ], [ 0, -1 ] ], [ [ -1/2, 1/2*E(12)^7-1/2*E(12)^11 ], [ 1/2*E(12)^7-1/2*E(12)^11, 1/2 ] ] ] ]

But this is very different to the restults given by the rep variable of your code, as shown below:

In [31]: rep
Out[31]: 
array([[[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          1.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        , -1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,
         -1.        ,  0.        ],
        [ 1.41421356,  0.        ,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]],

       [[ 1.        ,  1.        ,  0.        ,  0.        ,
          0.        , -1.41421356],
        [ 0.        ,  1.        ,  0.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,
         -1.        ,  0.        ],
        [ 0.        ,  1.41421356,  0.        ,  0.        ,
          0.        , -1.        ]]])

If you are willing to provide a more intuitive explanation of these results given by your code, I would be willing to conduct more GAP based comparative studies in order to pinpoint the cause of the problem you are referring to.

Anyway, the point group here is very simple, as shown below:

gap> IdGroup(P);
[ 24, 14 ]
gap> StructureDescription(P);
"C2 x C2 x S3"

So, I don't understand why such a simple finite unimodular matrtix group can trigger such a strange problem.

Regards,
Zhao

@lan496
Copy link
Member

lan496 commented Aug 6, 2023

In this test, I consider the action of rotations on 3x3 symmetric matrices (for example, elastic constants). The procedure to generate representation matrices is described in an example page: https://spglib.github.io/spgrep/examples/symmetry_adapted_tensor.html.

@hongyi-zhao
Copy link
Author

hongyi-zhao commented Aug 6, 2023

#100 (comment)
This issue seems to happen when input representation matrices have noise. The noise is amplified for higher ranks. Currently, I have no idea to properly handle it.

If I understand you correctly, you are referring to the cumulative error caused by decimal number approximations. As far as I know, it's a difficult thing to do float point computation in group theory. Strictly speaking, it is impossible to conduct exact computational group theory calculation over the real number field, so GAP only has extensive supports on the complete Cyclotomic field.

See here for the related discussion.

#100 (comment)
In this test, I consider the action of rotations on 3x3 symmetric matrices (for example, elastic constants). The procedure to generate representation matrices is described in an example page: https://spglib.github.io/spgrep/examples/symmetry_adapted_tensor.html.

I'll try to see if I can understand and reproduce it in GAP.

One thing that puzzles me is that your example page doesn't use any imprecise numbers, such as approximate floating point representations of irrational numbers, so this example cannot reflect the noise problem you've mentioned above.

@hongyi-zhao
Copy link
Author

hongyi-zhao commented Aug 7, 2023

#100 (comment)
This issue seems to happen when input representation matrices have noise. The noise is amplified for higher ranks. Currently, I have no idea to properly handle it.

I'm not sure if using higher precision floating point numbers would help avoid this problem.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants