-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathautotrain.py
42 lines (37 loc) · 1.7 KB
/
autotrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import subprocess
import tensorflow as tf
import glob
import scipy.io as sio
import numpy as np
base_path = 'Test/mhgd'
for i in range(5):
subprocess.call('python KD_methods_with_TF/train_w_distill.py '
+'--train_dir=%s%d '%(base_path,i)
+'--model_name=ResNet '
+'--Distillation=MHGD',
shell=True)
print ('Training Done')
pathes = glob.glob(base_path[:-len(base_path.split('/')[-1])] + '*')
training_acc = []
validation_acc = []
for path in pathes:
logs = sio.loadmat(path + '/log.mat')
training_acc.append(logs['training_acc'])
validation_acc.append(logs['validation_acc'])
training_acc = np.mean(np.vstack(training_acc),0)
validation_acc = np.mean(np.vstack(validation_acc),0)
train_acc_place = tf.placeholder(dtype=tf.float32)
val_acc_place = tf.placeholder(dtype=tf.float32)
val_summary = [tf.summary.scalar('accuracy/training_accuracy', train_acc_place),
tf.summary.scalar('accuracy/validation_accuracy', val_acc_place)]
val_summary_op = tf.summary.merge(list(val_summary), name='val_summary_op')
train_writer = tf.summary.FileWriter(base_path[:-len(base_path.split('/')[-1])] + 'average',flush_secs=1)
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
with tf.Session(config=config) as sess:
for i, (train_acc, val_acc) in enumerate(zip(training_acc,validation_acc)):
result_log = sess.run(val_summary_op, feed_dict={train_acc_place : train_acc,
val_acc_place : val_acc })
train_writer.add_summary(result_log, i)
train_writer.add_session_log(tf.SessionLog(status=tf.SessionLog.STOP))
train_writer.close()