You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am training finetuning "meta-llama/Llama-2-7b-hf" with a dataset.
Without eval strategy it is working fine.
But with eval strategy I am facing the issue mentioned in the title.
Could anyone help me in fixing this issue?
Hi,
I am training finetuning "meta-llama/Llama-2-7b-hf" with a dataset.
Without eval strategy it is working fine.
But with eval strategy I am facing the issue mentioned in the title.
Could anyone help me in fixing this issue?
This is the code I am using as reference:
https://github.com/stanfordnlp/pyreft/blob/main/examples/alpaca/train.py
Below is the error trace:
Below are the Training arguments I am passing:
training_args = TrainArguments( # output_dir=f"./checkpoints/rank{rank}", output_dir="./trained_model_wt_eval", learning_rate=3e-5, num_train_epochs=2, # evaluation_strategy="epoch", eval_strategy="steps", # do_eval=False, lr_scheduler_type="linear", # warmup_steps=warmup_steps, per_device_train_batch_size=2, per_device_eval_batch_size=2, # gradient_accumulation_steps=grad_acc, weight_decay=0.01, logging_dir=f"./logs/reft_rank{rank}", logging_strategy="steps", logging_steps = 2, save_strategy="steps", save_steps=500, save_total_limit=3, load_best_model_at_end=False, # fp16=True, bf16=True, remove_unused_columns=False )
Data arguments for training:
`def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, model, layers, training_args, data_args) -> Dict:
train_dataset = ReftSupervisedDataset(
"alpaca", data_args.data_path, tokenizer, data_split="train", seed=training_args.seed,
max_n_example=training_args.max_n_train_example,
input_field="input", instruction_field="instruction", output_field="output",
**{"num_interventions": len(layers), "position": training_args.position,
"share_weights": training_args.share_weights}
)
data_module = make_supervised_data_module(
tokenizer=tokenizer, model=model, layers=layers,
training_args=training_args, data_args=data_args)
`
The text was updated successfully, but these errors were encountered: