forked from coxlab/edn-cvpr2014
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheDNSalModel.py
82 lines (66 loc) · 2.92 KB
/
eDNSalModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import scipy as sp
from scipy import misc
import time
import logging
from liblinearutil import predict
from features import eDN_features, dist_to_cntr_features, whiten_features
EDN_INSIZE = (512, 384)
class EDNSaliencyModel(object):
def __init__(self, descriptions, svmModel, biasToCntr=False):
self.descriptions = descriptions
self.svm = svmModel['svm']
self.whitenParams = svmModel['whitenParams']
self.biasToCntr = biasToCntr
nFeatures = np.sum([d['desc'][-1][0][1]['initialize']['n_filters']
for d in self.descriptions if d != None])
diff = self.svm.get_nr_feature() - nFeatures
if diff != 0:
if diff == 1 and not biasToCntr:
raise ValueError("The number of features in eDN and svm "
"models does not match! Is the center bias "
"correctly set?")
def saliency(self, img, normalize=True):
"""Computes eDN saliency map for single image or image sequence"""
descs = self.descriptions
# rescale image to typical input size
imgSize = img.shape[:2]
rescale_factor = 0.5*EDN_INSIZE[0]/max(imgSize) + \
0.5*EDN_INSIZE[1]/min(imgSize)
# single image:
# img = misc.imresize(image, rescale_factor, 'bicubic')
# image sequence (or single image)
scaledImg = np.zeros([a*rescale_factor for a in imgSize] + [img.shape[2]])
for j in xrange(img.shape[2]/3):
scaledImg[:,:,j*3:j*3+3] = misc.imresize(img[:,:,j*3:j*3+3],
rescale_factor, 'bicubic')
img = scaledImg
# compute eDN features for description(s)
t1 = time.time()
fMapEDN, fMapSize = eDN_features(img, descs)
t2 = time.time()
logging.info("Feature computation took %0.3fs" % (t2-t1))
if self.biasToCntr:
fMapCntr = dist_to_cntr_features(img, fMapSize)
fMap = np.hstack((fMapCntr, fMapEDN))
else:
fMap = fMapEDN
fMapW, fwParams = whiten_features(fMap, self.whitenParams)
# SVM prediction
t1 = time.time()
bs, pAcc, pred = predict([], fMapW.tolist(), self.svm, options="-q")
t2 = time.time()
logging.info("Prediction took %0.3fs" % (t2-t1))
pred = np.array(pred)
# reshaping and upscaling
pred = pred.reshape(fMapSize, order='F')
predLarge = sp.ndimage.interpolation.zoom(pred,
(imgSize[0]/float(pred.shape[0]),
imgSize[1]/float(pred.shape[1])))
# normalization
if normalize:
rescaled = (255.0 / (predLarge.max()-predLarge.min()) *
(predLarge-predLarge.min())).astype(np.uint8)
return rescaled
else:
return predLarge